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Lab Schedule 
MSE2151: Astronomy Laboratory – Stars 

Spring 2022 
 
 

Week 1: Lab A – Working with Numbers, Graphs & the Computer 
Week 2: Lab B – Energy Transport in Stars 
Week 3: Lab C – Introduction to Spectroscopy 
Week 4: Lab D – Introduction to Optics 
Week 5: Lab E – Building a Galileoscope 
Week 6: Lab F – Classification of Stellar Spectra 
Week 7: Lab G – Effects of the Atmosphere on Astronomical Observations  
Week 8: Lab H – Taking a Star’s Temperature 
Week 9: Lab I – Trigonometric Parallax 
Week 10: Lab J – The Distance to a Star Cluster 
Week 11: Lab K – Measuring the Mass of the Andromeda Galaxy 
Week 12: Lab L – Expansion of the Universe 
Week 13:  MAKEUP LAB 
 

Observing sessions for the “Observatory Lab” will be scheduled throughout the 
semester. 
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Observatory Lab 

The Villanova Public Observatory 
 

 
 
 
PURPOSE: 
 
The science of astronomy began with the first humans who looked up into the nighttime sky and 
wondered “What’s going on up there?”   This semester, you will explore some of the answers to 
this question in your lecture course and in this lab course.   Most of this exploration will happen 
in the classroom or in the lab room.  This lab will give you the opportunity to go outside and 
actually look at the nighttime sky, using both the unaided eye and a powerful modern astronomical 
telescope.    
 
EQUIPMENT: 
 
The Villanova Public Observatory, accessible via the Department of Astrophysics & Planetary 
Science on the 4th floor of Mendel Science Center. 
 
 

 The Villanova Public Observatory 14” Celestron Schmidt-Cassegrain Telescope 
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Instructions 
 
To complete this lab you must fulfill 4 requirements: 
 

1. At least once during the semester you must attend an evening observing session at the 
Villanova Public Observatory, which will be conducted by students from the Department 
of Astrophysics & Planetary Science.  During this session, the students will take you on a 
tour of the most interesting objects visible in that night’s sky. 

2. Have one of the Observing Assistants sign and date the cover page of your lab report. 
3. Sign that evening’s Observatory Attendance Sheet.  (If you can’t find it, ask one of the 

Observing Assistants.) 
4. Write a 2-page report (double spaced, 11- or 12- point font, normal margins) describing 

your visit to the Observatory.  Include the sky conditions, describe the type of telescope 
you used, and the objects you viewed.  If you have suggestions for improvements of the 
observing sessions, or any general comments about the experience, please feel free to 
include them in your report.  

 
The observatory is accessed from the 4th floor of the Mendel Science Center through the 
Department of Astrophysics & Planetary Science.  Once on the 4th floor, the Observing Assistants 
will direct you to the telescopes. 
 
During the semester, and beginning Tuesday January 18th, the Observatory will be open Monday 
thru Thursday evenings, initially from 7-9 PM and then, after Daylight Savings Time begins on 
March 13, from 8-10 PM.  The Observatory will not be open during Spring Break or on any 
University holidays or Snow Days.  The last possible night to complete this assignment is the last 
day of classes Thursday April 28.  The Observatory will then be closed for the semester. 
 
Lab reports can be handed in any time during the semester.   The last time they will be accepted 
is 5 PM on the Reading Day, Friday April 29. 
 
There is no Make-up for the Observatory Lab!  Since it is one of 13 graded lab assignments 
this semester, then 1/13 of your grade will be a zero if you don’t get to the Observatory!  There 
will be plenty of clear nights this semester, but don’t wait til the end.  It is entirely possible that 
the last week or so could be clouded out or rained out – it’s happened before. 
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Frequently Asked Questions 
 
 

What will I be looking at? 
 
It depends on what is available in the sky.  The Moon looks great through our telescopes and the 
best time to view it is a few days after the First Quarter phase.  In this phase, the Moon is high in 
the sky around the time of sunset and the side illumination creates very pronounced shadows on 
the lunar surface, allowing the rugged terrain to be seen clearly.  During the Spring 2022 semester, 
First Quarter phases occur on Feb 8, Mar 10, Apr 9, and May 9.  
 
This will not be a great semester for planet viewing.  Mars, Jupiter, and Saturn will all be in the 
daytime sky throughout the semester and thus not viewable for the Observatory Lab.  Venus will 
be the “morning star” this semester, visible by eye above the eastern horizon shortly before 
sunrise.  Saturn, Mars, and Mercury will be in the same area of the sky as Venus and so – if you 
want to get up early − you may be able to catch sight of three or four planets before you go to 
breakfast.  If you’d like to keep track of the visibility of the planets throughout the year, check 
out:  https://www.timeanddate.com/astronomy/night/ 
 
In addition to the Moon, there will be plenty of other objects available to keep the telescope busy, 
including star clusters, bright nebulae, and the Andromeda galaxy.   

 
If you’d like to keep informed about upcoming celestial events in general, check out 
https://www.timeanddate.com/astronomy/sights-to-see.html 

 
 
Is the Observatory Open tonight? 
 
If “tonight” is a Monday thru Thursday and a regular class day, then the chances are good.  It all 
depends on the weather.  What is the best way to tell?  Look up shortly after sunset.  If you can 
see the stars, we’re probably open.  If you want a more high-tech solution, you can go to one of 
the many weather websites (or apps) available.  Most of these show cloud cover and some will 
project the cloud cover a day or so in advance.  One such site is 
http://www.weatherstreet.com/weather-forecast/Villanova-PA-19085.htm. 
 
 

What if I don’t fulfill all 4 of the requirements listed in the Instructions? 
 
No credit will be issued for the Observatory lab and a grade of “0” will be recorded. 
  

https://www.timeanddate.com/astronomy/night/
https://www.timeanddate.com/astronomy/sights-to-see.html
http://www.weatherstreet.com/weather-forecast/Villanova-PA-19085.htm
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Lab Report Cover Page 
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  Lab A 
Working with Numbers, Graphs, and the Computer 

Adapted from:  Laboratory Experiments in Astronomy, Johnson & Canterna 

 
 

 
PURPOSE: 
 
To become acquainted with the Excel spreadsheet and to review some mathematical concepts that 
will be implemented in upcoming labs. 
 
EQUIPMENT: 
 
The computer and the Excel spreadsheet. 
 
 

Introduction 
 
By their nature, the sciences are quantitative.  Science involves making measurements, analyzing 
quantitative relationships, and making predictions based on mathematical models.  In this exercise we will 
review some of those mathematical fundamentals that will be used in subsequent exercises.  This review 
will help you pinpoint any areas you might need to review in more depth.  The magnitude scale, a strictly 
astronomical concept, will be introduced.  This has been the shorthand notation used for centuries to 
describe the brightness of stars. 
 
 

Lab Procedure 
 
PART 1:  SCIENTIFIC NOTATION 
 
Astronomy is a science which deals with the very large and the very small.  For example, the distance to 
the nearest star (beyond the Sun) is approximately 39,900,000,000,000 km, while the distance between the 
electron and proton in an atom of Hydrogen in interstellar space is about 0.00000000529 cm.  It can be 
cumbersome to deal with such extreme numbers and a more compact way of dealing with them is to express 
them in scientific notation. 
 
The number 13,700,000 is expressed in scientific notation as 1.37 × 10 7.  “10 7” is shorthand for 1 followed 
by 7 zeros, 10 × 10 × 10 × 10 × 10 × 10 × 10 (10 times itself 7 times), or 10,000,000.  1.37 × 10 7 equals 
13,700,000 or 1.37 × 10 million.  Any number can be expressed as a number between 1 and 10, times 10 n.  
Take 207,000 as an example.  There are 5 decimal places to the right of the 2.  Thus 207,000 = 2.07 × 10 5.  
Multiplication by 10 is equivalent to shifting the decimal point in a number one place to the right.  
Multiplication by 10 n is equivalent to shifting the decimal point n decimal places to the right, or to 
multiplying by 10 n times. 
 
This technique is also useful for numbers smaller than 1.  For example, 0.0012 can be represented as 1.2 × 
10 -3 (or 1.2 divided by 1000).  A negative exponent indicates how many places the decimal is shifted to the 
left.  10 -3 is equivalent to 0.001 or 1/103.  Note:  A negative exponent does not mean that the number itself 
is negative; only that it is between 0 and 1. 
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EXERCISE 1-1:  Using Table 1 included on the last page of this lab, convert the numbers given 
in the first column (“Standard Notation”) into scientific notation. 
 
EXERCISE 1-2:  Create a single-column Excel spreadsheet table using the “Standard Notation” 
numbers from Table 1.  Label the top row of the column (you can call it “Standard Notation.”) 
Your numbers should look exactly as they do in Table 1.  You will need to adjust the number of 
decimal places displayed for each number.  To do this, first highlight a cell, then right-click and 
select Format Cells.  Select Number and type in the desired number of decimal places needed to 
match the format in the Table 1.      
 
EXERCISE 1-3:  On your Excel spreadsheet, copy your column of numbers and paste it into the 
adjacent column (i.e., column B).  Now have Excel convert these numbers to scientific notation for 
you.  To do this, highlight the cells, right-click, and select Format Cells.  Then choose Scientific 
Notation and type in the desired number of decimal places (in this case, 2).   Label this column 
“Scientific Notation.”   
 

Notice that, in Excel, the format used for scientific notation is somewhat different from that described above.  
E.g., the quantity 2.07 × 10-5 is written by Excel as 2.07e-5, where the “e” stands for “times 10 to the”.  
This notation must be used to enter scientific notation into Excel. 
 
Also notice that it is easier to keep track of significant figures in scientific notation.  Simply, all the figures 
used in scientific notation are significant.  Thus, the number 2.07e-5 is implied to have three significant 
figures and the number 2.070e-5 is implied to have 4 significant figures.  In this last case, the trailing zero 
is significant and thus a result expressed as 2.070e-5 can be assumed to be more precise than a result 
expressed as 2.07e-5. 
 
 
PART 2:  LOGARITHMS 
 
Another shorthand way of expressing very large or very small numbers is with logarithms. The logarithm 
or “log” of a number is simply the exponent to which 10 must be raised to equal that number: 
  

  𝑥𝑥 =  10𝑦𝑦     ⇔      𝑦𝑦 = log(𝑥𝑥) (1) 
  

For example, the number one hundred million (100,000,000) can be written as 108 and, therefore, 
log(100,000,000) = 8. 
 
Negative numbers do not have logarithms since there is no power to which 10 can be raised that will yield 
a negative number.  However, the logarithm itself can be negative, and corresponds to a number greater 
than zero but less than one.  The log of a number can also be a non-integer. Consider log(250). The number 
250 is greater than 102 (i.e., 100) but less than 103 (i.e., 1000) and so we would expect its logarithm to be 
between 2 and 3.  In fact, log(250) = 2.40. 
 
 

EXERCISE 2-1:  In column C of your Excel spreadsheet, compute the logarithms of the numbers 
in the first column.  For example, to compute the log of a number located in cell A2 of your 
spreadsheet (i.e., column A, row 2) and place the result in cell C2, simply type “=log(A2)” in cell 
C2.  The log of the number in cell A2 will then appear in cell C2.  Do this for all entries in column 
A.  Be sure to label the column and adjust the number of decimal places in the displayed logarithms 
to preserve the number of significant figures in the original numbers. 
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NOTE:  Logarithms are never expressed in scientific notation.  Always use standard notation. 
 
NOTE:  With logarithms, only the numbers to the right of the decimal point are significant digits.  For 
example, the number 4,567,000,000 has 4 significant digits.  It should be expressed in scientific notation as 
4.567 × 109 (again, with 4 significant digits) and logarithmically as 9.6596.  In his latter case, the integral 
portion of the logarithm, “9” actually refers to the power of 10 in the scientific notation form.  The decimal 
portion “.6596” carries the information contained the significant digits. 
 
 
PART 3:  LINEAR RELATIONSHIPS 
 
In this exercise we will see how physical relationships may be examined graphically.  In the figure below, 
we have plotted the weights (on the “y” axis) versus the heights (on the “x” axis) for the Super Bowl-
winning 1985 Chicago Bears football team, using the small diamond symbols.  It is clear from the plot that 
there is some general correlation between the heights and weights, i.e., “the taller, the heavier.”  We have 
drawn a straight line through the data to indicate a more specific linear relationship between the height and 
weight in this group.  The line is intended to represent the general trend in the data, while ignoring specific 
deviations of individuals.  In this case, the line appears to give a good fit to the general trend of the data 
and it is reasonable to conclude that height and weight are linearly-related for this dataset.   
 
Note the outlying point far above the main relationship; these data correspond to William “the Fridge” 
Perry, one of the first 300 pounders in football and who clearly did not fit into the general height-weight 
relationship of his teammates! 
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In the Table below we have listed the heights and weights for a different team, namely, a selection of 15 
typical college students. 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
EXERCISE 3-1:  Transfer these data to a new Excel spreadsheet.  To open a new sheet, click 
Sheet2 at the bottom of your current spreadsheet.  (If there is no Sheet2, click the circled “+” sign 
to create one.)  In your spreadsheet, use only two columns – height and weight.  Label the columns 
appropriately.  Be sure that the number format in your spreadsheet matches that of the table. 
 
EXERCISE 3-2:  Now create a graph of the college students’ Weight vs. Height on your 
spreadsheet. Follow the instructions given in the “Microsoft Excel Tutorial” in Appendix I of this 
Lab Manual. Be sure that the data in the table are labeled and that the plot is properly scaled and 
annotated. 

 
Once again, you should observe a nearly linear relationship between the height and weight of people in the 
group, as you did for the football players in Problem 1. That is, the heights and weights should fall close to 
a straight line drawn through them.   
 

EXERCISE 3-3: Using the trendline feature of Excel, show the linear relationship that best fits 
the data.  Make sure that the formula for the trendline is displayed clearly on the plot.  (Right-click 
somewhere on the trendline, then click “Format Trendline…”, then check “Display equation on 
chart.”).   

 
Question 3-1:  Does a visual inspection of your plot confirm that the heights and weights 
for typical college students are linearly related? Discuss the possible causes of the 
observed relationship. Why might individuals deviate from this simple relationship? 
 
Question 3-2:  One of the most powerful uses of a graph is that of prediction.  Say, for 
example, that you know the height of a college student but not his/her weight.  We can make 
an "educated guess" and predict the weight of the student by using our graph and the 
trendline which represents the general relationship between height and weight.  Suppose 
that this person is 6' 2-½" (i.e., 74.5”) tall.  What weight is predicted for a 74.5” tall college 
student?  Use the formula for your trendline to make this determination.  Show all the work 
in your calculation.  Remember your significant digits! 

Typical College Students 
Height 
(inches) 

Weight 
(pounds) 

Height 
(inches) 

Weight 
(pounds) 

60 95 69 150 

70 173 64 115 

67 125 62 112 

75 180 64 127 

61 105 68 155 

73 200 72 160 

67 140 65 127 

71 150 … … 
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Question 3-3:  What differences do you find between the heights and weights of the groups 
shown in Figure 1 (the Chicago Bears) and on your graph (for college students)?  What 
might be the causes of these differences?  Do the lines drawn through the data in both 
graphs look like they are pieces of the same overall relationship?  Explain. 

 
 
PART 4:  NON-LINEAR RELATIONSHIPS 
 
Not all physically interesting relationships are linear.  For example, the table below shows the annual 
amount of U.S. Government expenditures from 1850 to 2010 versus year which, you will shortly see, 
reflects a very non-linear relationship. 
 

U.S. Government Expenditures 

Year $ Year $ 

1850 29,000,000 1960 97,284,000,000 

1860 78,000,000 1980 590,941,000,000 

1880 304,000,000 1990 1,252,990,000,000 

1900 629,000,000 2000 1,788,950,000,000 

1920 6,785,000,000 2010 3,457,080,000,000 

1940 10,061,000,000 … … 
 
 

EXERCISE 4-1:  Open a new Sheet in Excel by clicking the Sheet3 tab and enter the data from 
the table above.  (In your spreadsheet, use only two columns – year and expenditures.)  Label the 
columns appropriately.  If the width of the columns in your spreadsheet is too small, there might 
not be enough room for Excel to write in all the digits in the numbers and you will see “#########” 
instead.  If you see this, simply drag the right edge of the column letter that represents the 
expenditure data to expand the width of these cells.  Be sure to format the cells so that the numbers 
appear exactly as in the Table above. 

 
EXERCISE 4-2:  Now create a plot of expenditure (y-axis) versus year (x-axis).  Don’t forget to 
scale and label the plot axes appropriately.  Find a trendline which seems to represent the data.  
Note that a linear trendline will definitely not work!  Excel offers you several other options (e.g., 
“polynomial”, “exponential”, “power law”, etc.  Find the one which best represents the data and 
show it on your plot.  Make sure to include the formula for the trendline on the plot.  What kind of 
trendline did you use? 

 
(Hint:  Maybe this gives meaning to the phrase: 

“Our national debt is increasing at an exponential rate!”) 
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EXERCISE 4-3:  In your Government Expenditures Excel spreadsheet, copy the contents of 
column B (Expenditures) to column C.  Label this column “$ in Scientific Notation.”  Now use the 
Format Cells command to convert the expenditures in column C to scientific notation.  Make sure 
to specify the correct number of significant digits by adjusting the numbers of decimal places 
displayed.   
 
EXERCISE 4-4:  In your Government Expenditures Excel spreadsheet, create a “Log $” column 
in column D to display the expenditures in logarithmic form.  Again, be sure the correct number of 
significant digits is displayed. 
 

Your plot of Government Expenditures is interesting but notice how hard it is to distinguish among the 
values from earlier than about 1960. Also, you should see that it would be very difficult to use the graph to 
predict future spending with any confidence.  Both problems might be reduced by looking at the logarithm 
of the expenses… 

 
EXERCISE 4-5:  Now create a plot of the logarithm of the expenditures in dollars as a function of 
year.  Adjust the scales to fill the plotting space (if necessary) and add labels and a title.   Notice 
that the very non-linear relationship between Year and Expenditure seen in Exercise 4-2 has 
become much simpler looking.  Because of this, we would say that expenditures and time have a 
logarithmic relationship.  Create a linear trendline in your Year vs. Log($) plot.  Does it fit the 
observed relationship?  Don’t forget to put the formula for the trendline on the plot. 

 
Question 4-1:  What does your plot from Exercise 4-5 suggest that the annual expenditure 
will be in the year 2022?  Use the formula for the trendline you just created in Exercise 4-
5 to make this prediction.  Show all work in your calculation.  Note that the formula will 
return the logarithm of the predicted expense. Record this and convert it to the expense 
itself using Equation 1. Express the result in both standard notation and scientific notation.  
Can we be confident in this prediction?  Explain why or why not. 

 
 
PART 5: MAGNITUDES - AN ASTRONOMICAL EXAMPLE 
 
Astronomers use a logarithmic scale, called the Apparent Magnitude Scale, to quantify the brightness of 
stars as seen from the Earth.  These apparent brightnesses depend on both the intrinsic energy output of the 
stars and on their distances from the Earth.  Over 2,000 years ago the Greek astronomer Hipparchus 
catalogued the positions and brightness values of approximately 6,000 stars visible to the naked eye.  The 
apparent brightness was described by a unit called a magnitude, with first magnitude being the brightest 
visible stars and sixth magnitude corresponding to the faintest.  Contrary to our intuition, the bigger (i.e., 
more positive) the apparent magnitude, the fainter the object.  The brightest object in our sky – the Sun – 
has the most negative apparent magnitude.  See the figure below. 
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In the following Table we have listed the apparent brightness relative to the star Mizar for the ten stars that 
are closest to the Sun.  For example, the star Proxima Cen appears 2.54x10-4 times as bright as Mizar as 
seen from Earth.  There is nothing particularly special about Mizar.  It is just a convenient reference star, 
which appears in the handle of the Big Dipper. 
 
 

Star Apparent Brightness 
relative to Mizar 

Proxima Cen 2.54 x 10-4 

Cen A 6.72 

Cen B 1.96 

Barnard’s Star 1.02 x 10-3 

Wolf 359 2.58 x 10-5 

BD+36 2147 6.66 x 10-3 

L726-8 A 6.56 x 10-5 

UV Cet B 4.12 x 10-5 

Sirius A 2.55 x 101 

Sirius B 2.20 x 10-4 
 
 

EXERCISE 5-1:  Open a new Sheet in Excel by clicking the Sheet4 tab. Create an Excel 
spreadsheet with the Star names (column A) and apparent brightnesses (column B) from the table 
above. Be sure to use the correct form for scientific notation in Excel! Calculate the logarithm of 
the apparent brightness for each of the stars and place it in column C.   
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The apparent visual magnitude m of a star is computed from its apparent brightness by the formula: 
 
 m =  −2.5 × log(apparent brightness) + 2.06 (2) 

 
where the constant 2.06 is needed to make these calculated magnitudes correspond to those derived by 
Hipparchus. The magnitude scale was not purposely designed by Hipparchus to be logarithmic; it just 
reflects the sensitivity of the human eye. The eye has evolved to be sensitive over a tremendous range of 
light levels, ranging from sunny days to a starlit night. To accomplish this remarkable feat it uses a 
shorthand of its own. Thus, a large range of sensitivity yields information that is compressed logarithmically 
and sent to our brains.  Logarithmic scales are used in many other places, such as in describing sound levels 
(decibels) and earthquake vibration amplitudes (the Richter scale). 
 

EXERCISE 5-2:  Using your Excel spreadsheet, calculate the apparent magnitudes m for each of 
the stars using Equation 2 above and place the results in column D of your current spreadsheet. 

 
NOTE:  Just like logarithms, astronomical magnitudes are never expressed in scientific notation.  Always 
use standard notation.  Also, just like logarithms, only the digits to the right of the decimal point are 
significant digits. 
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TABLE 1:  EXERCISE 1-1 
 

Convert the values given in the Standard Notation into Scientific Notation 
 
 

Standard Notation Scientific Notation 

632,000,000,000  

632  

63.2  

632,000  

0.632  

0.000000632  

0.00632  

0.0000632  
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Figure1: TOP – Schematic representation of a photon of light working its 
way from the center of the Sun to an observer’s telescope.  BOTTOM - The 
visible-light spectrum of the Sun showing dark absorption lines against a 
continuous background. 

Lab B 
Energy Transport in Stars 

(Adapted from Contemporary Laboratory Experiences in Astronomy) 
 

 
 
PURPOSE: 
 
To explore the nature of photons and how they interact with gas atoms and to understand how the 
absorption and emission lines we see in stellar spectra are produced as a result of these interactions. 
To understand why it takes a photon a long time to travel from the center to the surface of the Sun. 
 
 
EQUIPMENT: 
 
CLEA computer program Solar Energy Transfer 
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Introduction 
 
As you have learned (or will!) in your lecture class, the light we see coming from the Sun and the stars 
originates deep within their interiors in a region known as the stellar core. It is only here that the 
temperatures and densities are high enough to allow nuclear fusion reactions to occur. These reactions 
release huge amounts of energy, which provide the thermal pressure that helps a star withstand its own 
self-gravity and ultimately emerge from the star’s surface as the light that makes the stars shine in the 
nighttime sky. 
 
Much of the energy generated in a star’s core of is carried to its surface (and beyond) by individual photons 
of light. As the photons travel outwards from the core, they continuously interact with the gas particles 
making up the mass of the star. For the purposes of this discussion, we can think of a star as being composed 
of two general regions:  
 

• The Interior – the main body of the star. In this hot, dense region most atoms are fully ionized. I.e., 
their electrons have been stripped off, leaving behind a positively charged ion. The electrons, which 
can move independently through the gas, are called free electrons. 

 
• The Atmosphere – the thin layer of gas that makes up the outermost skin of a star. In this cooler, 

lower density region, many electrons are attached to atomic nuclei, and no longer free to move 
independently through the gas. These are known as bound electrons. 

 
There are several distinct types of interactions that may occur between photons and gas particles as the 
energy works its way to the stellar surface. 
 

• Electron Scattering – which occurs when a photon encounters a free electron. The photon is 
absorbed by the electron and then immediately re-radiated in some random new direction (as if it 
had simply scattered off the electron). The photon may gain or lose some energy due to this 
interaction. 

 
• Free-Free Absorption – in which a free electron in the vicinity of an atom or ion can absorb a 

passing photon, making the electron more energetic.  The electron may later give up this extra 
energy at any time in the form of a new photon, again to be radiated in some random direction. 

 
• Bound-Free Absorption – in which a photon is absorbed by an atom or ion, causing it to eject a 

(formerly) bound electron. This new free electron can recombine with another ionized atom some 
time later, giving rise to the release of a new photon in some random direction. 

 
• Bound-Bound Absorption – in which an atom or ion absorbs a passing photon, causing one of its 

bound electrons to become more energetic (but still remain bound). The electron may later give up 
this extra energy in the form of a new photon, again to be radiated in some random direction. 

 
Photons traveling through the hot dense stellar interior interact with the gas primarily through the first three 
processes (electron scattering, free-free absorption, and bound-free absorption). As a result, these photons 
travel a zig-zag path on their way out, as they are scattered or absorbed and reemitted in nearly random 
directions. See Figure 1. So many interactions occur that, in the Sun, it takes literally hundreds of thousands 
(to, perhaps, millions) of years for a typical photon to travel from the center to the surface! 
 
The stellar atmosphere is cooler than the interior and largely transparent to most of the photons that reach 
it after traveling through the interior. Thus, these photons simply pass through the atmosphere and out into 
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space, creating a continuous spectrum and producing the light we observe from the stars. But some photons 
– with very specific energies – undergo the bound-bound absorption process and are prevented from leaving 
the stars. This produces gaps in the spectrum of the Sun and stars – at very specific energies – that are 
known as absorption lines. See the bottom part of Figure 1. Analysis of the emergent spectrum of light 
from stars, including the absorption lines, can provide a great deal of information on the physical conditions 
within a star. 
 
 

Lab Procedure 
 
The computer program that you will use in today’s lab (Solar Energy Transfer) is designed to illustrate 
how energy flows from the energy-generating core of a star out into space. Specifically, you will see how 
individual bits of light, known as photons, travel from the core of the Sun to its surface, and how they 
interact with matter on their way into space. The program includes several simulations of how photons 
behave as they interact with atoms of gas.   
 
To begin, click on the Solar Energy Transfer program in the “MSE Astrolab Student Folder” on your 
Desktop. Select Log In... from the menu and enter your name. Do not use punctuation marks. When the 
information is correct, click OK to continue. 
 
 

EXERCISE 1: ENERGY FLOW THROUGH THE INTERIOR 
 
In this first exercise, the “FLOW” simulation, you will observe how a photon works its way up from the 
center of the Sun (or other star) towards its surface. You will be shown a two-dimensional slice of the 
interior of a simulated star and observe how a photon diffuses outward from the core and how the numbers 
of layers of atoms used to model the simulated star affects the amount of time it takes for a photon to escape 
into space. As a result of the electron scattering, free-free, and bound-free processes, every time a photon 
interacts with matter, it is re-directed so that it travels in a new and nearly random direction. The resulting 
zig-zag path is called random walk.  This is graphically demonstrated in the FLOW Simulation. 
 
Step 1:  Start the program 
 
Click on Simulation, then Flow, then 1 Photon to start the energy FLOW simulation.  
 
Step 2:  Perform a 5-layer simulation 
 
Click Parameters, # of Layers… then type in “5” and click OK. Press Run Simulation and then observe 
the photon as it works its way out from the interior of the star to its surface and escapes into space. The 
simulation will end when the photon escapes and the number of times the photon interacted with an electron 
will be listed on the screen (“Interactions”). Record the number of interactions in the appropriate column 
of Table 1 (in the row labeled “Trial 1”). Repeat two more times (Trials 2 and 3) end enter the number of 
interactions into Table 1. After you have completed three trials, compute the mean number of interactions 
and enter it Table 1. 
 
Note: Under Parameters, Trails you have the option of tracing out the photons’ crooked path. Trails are 
visually interesting but remember that photons are not “eating” their way out of the star in any sense, they 
are simply bouncing around! Typically, the program is run with Trails set to No. 
 
Step 3:  Perform 10, 15, 20, 30, and 40-layer simulations 
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Now repeat Step 2 using simulations containing 10, 15, 20, 30, and 40 layers of atoms. Perform 3 trials for 
each model and enter the results in Table 1. 
 

 Table 1: Flow Simulation  

n 
(number of 

layers) 

Number of Interactions 
n2 Trial #1 Trial # 2 Trial #3 Average 

5      

10      

15      

20      

30      

40      
 
 
 

 
 
Step 4:  Analyze the data 
 
Using either the graphs provided at the end of the lab manual or Excel (as per your instructor’s directions), 
make a plot of the number of interactions (y-axis) as a function of the number of layers in the simulation 
(x-axis). Sketch in a smooth curve that best fits your data. If you are using Excel, use the Trendline 
feature and the Power option. Be sure to show the equation of your Power fit on the plot.  
 
It can be shown theoretically that the average number of interactions that occur before a photon can escape 
is very nearly n2, where n is the number of layers in the model. Complete the last row of Table 1 to compare 
your results with this prediction.  
 

Question 1:  How do the calculated values of n2 compare with the average results from the 
simulations? If they are different, why? If you used Excel and fit your data with a “Power” 
Trendline, then the exponent in your Trendline equation will be 2 if your data agree exactly 
with the n2 prediction. Is this the case? Are your results consistent with the prediction? (In 
answering this question note that there is a randomness to the scattering process. Scattered 
photons aren’t aimed at any particular direction, so whether an atom happens to be in their 
way is a matter of chance. Think of it this way: If you flipped a coin 4 times, would you always 
expect to get 2 heads and 2 tails? What if you flipped it 40 times?) 

 

TIME SAVING HINT 
You can open a second instance of Solar Energy Transfer and make the measurements 

for two (or more) different numbers of layers simultaneously. 
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Write the average number of interactions needed for the 40-layer model on the classroom whiteboard. 
When the whole class has done this, average the results. 

 
Question 2:  What is the %-difference between the class average and 1600 (which is 402)? 
Use the following formula: 
 

%-difference = 
observed-expected

expected
×100% 

  

What is the %-difference between your 3-sample average and the expected value of 1600? 
Which result has the smallest %-difference (in terms of absolute value)? Is this what you should 
expect? Explain. 

 
You will have noticed that the time required for a photon to escape from the interior of the star got longer 
as the number of layers in the simulation increased. Luckily for you, we stopped at 40 layers. In a realistic 
model, the size of the layers would be comparable to the separation between atoms and many (MANY!) 
more than 40 layers would be required. However, since the lab period does not last for a million or so years, 
we limited the demonstration to 40 layers.   
 
Click Return to end the FLOW Simulation 
 
 

EXERCISE 2: A CLOSE-UP STUDY OF PHOTON/ATOM INTERACTIONS 
 
Once a photon gets close to the surface of a star, and enters its atmosphere, it still has to escape into space. 
The atmosphere is essentially transparent to most photons and they easily pass through it. However, if the 
energy of a photon happens to match the “excitation energy” of an atom in the atmosphere, then the photon 
will be absorbed by the atom and later re-radiated in some random direction, i.e., the “bound-bound” process 
will occur. The excitation energy is the energy required for a bound electron in an atom to move to a higher 
energy state. Once the electron moves to the higher state, it immediately jumps back down to the lower 
state, releasing the photon in a random direction. In the simulations below, photons that match an atom’s 
excitation energy are called “line photons.” If a photon’s energy is not properly matched to the atoms in a 
gas, the photon will pass through the gas largely unaffected. These are called “continuum photons.”  
 
Click on Simulation and choose Interaction.   
 
This simulation allows you to study how individual photons interact with atoms. The display portrays a 
field of atoms in a gas. You can think of this as representing a stellar atmosphere. Photons will enter from 
the left, as if emerging from the stellar interior, and attempt to pass through the atmosphere and exit at the 
right. You can change the scale of the simulation by selecting Large Scale or Close-Up from the View 
menu. Try both! You will see the electron clouds surrounding each atom. These are the regions where the 
bound electrons are found. The atomic nuclei, where the protons and neutrons reside, are buried deep in 
the center of each atom and are invisible at the scale of this simulation. These simplistic pictures are for 
reference only and are not drawn to scale. Atoms are seldom so round because electrons reside in complex 
levels above the nucleus called “shells,” which are not necessarily spherical. 
 
Select Photon Type, Line to choose this type of photon to be sent through the gassy region. Line photons 
have precisely the right amount of energy to be absorbed by the atoms in the gas. Absorbing a photon adds 
energy to the electrons in the atom, “exciting” them into higher energy levels. After a very brief moment, 
they fall to a lower energy state and release a photon in some random direction. The electrons are said to 
be undergoing bound-bound transitions, since they remain attached to the same atom even when excited. 
Click on the Run button to watch as line photons are sent from the left of the screen to pass through or 
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interact with the atoms. Click on the Stop button after 20 line photons are sent. Fill in Table 2.  
 
Now repeat the process, but for continuum photons (Photon Type, Continuum). Continuum photons have 
the wrong energy to interact easily with the atoms, and often pass through them without incident.  
Occasionally, a continuum photon will scatter off of an electron, but not often. Click on the Run button to 
watch as continuum photons are sent from the left of the screen to pass through or interact with the atoms.  
Click on the Stop button after 20 continuum photons are sent. Fill in Table 2. You should have observed a 
significant difference in the number of interactions experienced by the two types of photons. 
 

Table 2: Photon/Atom Interactions 

 Line Photons Continuum Photons 

Number of photons sent   

Number of photons scattered   

Number of photons un-scattered   

 
Press Return to exit the INTERACTION simulation. 
 
 

EXERCISE 3: EXPERIMENT MODE 
 
Select Experiment from the Simulation menu to start. 
 
In this final simulation, you will investigate the formation of an absorption line spectrum. You will shoot 
photons of a range of energies into a specific gas and determine the fraction which emerge unscathed and 
reach your detector. As in Exercise 2, you can imagine that this illustrates what happens as photons from a 
stellar interior attempt to pass through a stellar atmosphere. When few interactions occur (as in the case of 
a continuum photon) many emergent photons will be detected. When many interactions occur (as in the 
case of a line photon) few get detected because most are scattered away in other directions. A plot of the 
fraction of photons detected as a function of energy (or wavelength) is essentially a plot of the absorption 
spectrum of the gas and is the same as what you might observe for a star using a spectrograph attached to 
a real telescope.  The energies or wavelengths you will be observing are in the “optical” spectral region, 
i.e., the region to which your eye is sensitive. 
 
You have several different gases you can choose from for this study. They include thin gaseous clouds of 
calcium (Ca), hydrogen (H), magnesium (Mg), oxygen (O) and sodium (Na). Each kind of atom has its own 
characteristic set of energies and thus each of these gases will yield a different absorption spectrum.  You 
will perform your experiment using two different gases and compare the results.   
 
Step 1:  Select the first gas. 
 
Use the Select Gas Atoms option under Parameters to choose your first gas. Enter the name of the gas in 
the third column of Table 3 below.  
 
Step 2:  Select the number of photons 
 
Use # of Photons from the Parameters menu to set the photon count at 25. 
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Step 3:  Set the starting photon energy (i.e., wavelength) 
  
Use Change Photon Energy from the Parameters menu to set the photon energy to 1.5 eV1. As you 
change the photon energy, the wavelength changes automatically since the two are related2. You can reset 
the counters and statistics using the Reset button. 
  
Step 4:  Run the Simulation for all photon energies 
 
Run the simulation, sending 25 photons through the gas at each energy level from 1.5 through 3.2 eV.  Use 
Change Photon Energy to adjust the energy after each 30-photon set. In Table 3, fill in the wavelength 
and the number of detected photons for each energy level as you proceed. For example, if you send 25 
photons through the gas at the 2.3 eV energy level and 5 are detected, enter a 5 into the Table. 
 
Step 5:  Repeat the above three steps for a second gas, recording the results in Table 3. 
 

 
After you have completed Table 3, make a separate graph of your results for each of the two gases. I.e., 
plot the number of photons detected (y-axis) vs. photon wavelength (x-axis). Use the graphs provided at the 
end of the lab manual or an Excel worksheet, as directed by your instructor. Draw a smooth curve through 
your data points. Be careful of especially deep absorption features. If you are using Excel, you can have 
Excel join the data points with a smooth line. Although this is a crude spectrum, you should be able to 
see one or more pronounced dips in the number of photons detected. The energy, and thus the wavelength, 
of the dips identify photon energies that easily energize the atom. Once energized, as you know from 
Exercise 2, the atoms will reemit the photons in random directions. Most of the photons will move in 
directions away from an observer viewing the atom head on, i.e., away from their original paths before the 
interaction.  
 
 

Question 3:  Look at the two plots you just made. Do you see any evidence for “lines” in the 
spectra?  Explain how you recognize them. What energies and wavelengths do these 
correspond to? How do the two spectra compare? Can you tell them apart? Explain how the 
spectrum of a star might reveal the composition of its atmosphere. 

 
 
Click Return to exit the EXPERIMENT Simulation. 
 

 
1An electron-volt is the amount of energy added to an electron when it is passed through an accelerating potential of 
one volt.  It is a very small amount of energy. 

2If you would like to calculate the wavelength (in meters!) by hand, the equation is: 

𝜆𝜆 = ℎ𝑐𝑐
𝐸𝐸�  

Where: h = Plank's constant = 4.14 x 10-15 eV second; c = speed of light = 3 x 108 meters/second; and E = energy of 
the photon in electron volts 

TIME SAVING HINT 
You can open a second instance of Solar Energy Transfer and make the measurements for 
your two gases simultaneously. Just be sure you don’t mix up the numbers in Table 3! 
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Click Quit to exit the Solar Energy Transport program. 
 
 
 
 
  

Table 3: Experiment Mode 

       Gas =     Gas =  

Energy Wavelength Number Number 
(eV) (nm) Detected Detected 

1.5       
1.6       
1.7       
1.8       
1.9       
2.0       
2.1       
2.2       
2.3       
2.4       
2.5       
2.6       
2.7       
2.8       
2.9       
3.0       
3.1       
3.2       
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Summary Question 
 

Question 4:  If this were a realistic attempt to simulate a photon escaping from the Sun, you 
would have to use a model with a much larger number of layers and the time you would have 
to wait for a photon to escape would be much longer.  In fact,   detailed calculations show 
that light generated in the center of our Sun can take up to 10,000,000 years to finally work its 
way to the surface!  But the speed of light is 300,000 km per second.  At that speed, light 
should only take 2 or 3 seconds to get out of the Sun (the Sun's radius is about 700,000 km).  
Using what you have learned in this lab, explain the apparent contradiction. 
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Lab C 
Introduction to Spectroscopy 

(Adapted from Laboratory Experiments in Astronomy, Johnson & Canterna) 
 
 

 
 
PURPOSE: 
 
To examine the spectra of common light sources, learn how atomic spectra are related to atomic 
structure and see that the pattern of photons emitted by a hot gas can be used to identify the nature 
of the gas.  
 
EQUIPMENT: 
 
Transmission grating, meter stick, ruler, gas discharge lamps with power supplies, household light 
bulbs. 
 
 

 
Figure 1:  The three types of spectra and how they form 
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Introduction 
 

Spectroscopy refers to the study of the electromagnetic radiation (i.e., light) emitted by matter, by dispersing 
the light into its component colors. The properties of this dispersed light, called a spectrum, can reveal 
much about the properties of the emitting object. The three different types of spectra are illustrated in Figure 
1. A continuous spectrum is produced by a hot dense object (e.g., the filament in a light bulb). In this case, 
light of all wavelengths is emitted. An absorption spectrum is produced when a continuous spectrum passes 
through a cloud of gas and some wavelengths are selectively absorbed by the gas. Finally, an emission 
spectrum arises when a low density gas is heated and selectively emits photons of specific wavelengths. 
The overall distribution of light in a continuous spectrum depends on the temperature of the emitting object, 
but not on its composition. For example, a 300˚K piece of metal emits the same continuous spectrum as a 
300˚K human being. It is the emission and absorption spectra which can reveal the composition of an object, 
due to the atomic nature of matter.  
 
An atom consists of two basic regions, a central nucleus (containing protons and neutrons) and a 
surrounding electron cloud (containing electrons). The positive electrical charges of the protons in a 
nucleus attract the negatively charged electrons in the cloud, holding an atom together. Due to the laws of 
quantum mechanics, the electrons are only allowed to occupy certain regions around the nucleus. The 
locations of these regions depend on the energy of the electrons: those with small amounts of energy must 
lie close to the nucleus, while those with more energy will lie farther away. These allowed regions are 
commonly referred to as energy levels. The energy level closest to the nucleus is called the ground state. 
Electrons prefer to be in their ground states but, by the addition of energy, can move up to higher levels. In 
this case, the electron is said to be in an excited state. Once there, the electrons will spontaneously jump 
back down towards the ground state, often stopping momentarily at intermediate levels on the way and 
shedding energy with each transition between levels. Each time an electron jumps between two levels, it 
must gain or lose energy equal to the energy difference between the two levels, i.e., Eupper – Elower. 
 
An absorption spectrum is formed when an atom absorbs a passing photon of light that has just the right 
amount of energy to allow an electron to jump from a lower level to a higher level. Most photons do not 
meet this requirement and will pass the atom without being absorbed. The missing photons will be revealed 
by their absence in the spectrum, i.e., by the presence of dark lines at specific wavelengths. An emission 
spectrum is formed when excited electrons drop from upper levels to lower levels, emitting photons with 
energy equal to the energy difference between the levels and producing a spectrum consisting of bright 
lines. The original excitation may have been caused by collisions with other particles in the hot gas. (See 
Figure 1.) 
 
In both cases, the energy differences between the upper and lower levels are revealed by the photons’ 
wavelengths λ. From the general relation between λ and the energy E of photons, we have: 
  
 𝜆𝜆 =

ℎ𝑐𝑐
𝐸𝐸𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

=  
ℎ𝑐𝑐

𝐸𝐸𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑢𝑢 −  𝐸𝐸𝑙𝑙𝑜𝑜𝑙𝑙𝑢𝑢𝑢𝑢
 (1) 

  
where h and c are Planck's constant and the speed of light, respectively. Thus, the wavelengths measured 
for emission or absorption lines reveal the energy level differences of the atoms in a gas. Since these 
differences are unique for each type of atom, the pattern of observed lines can be used to identify the types 
of atoms present in the gas. For this reason, the emission and absorption lines are often thought of as the 
“fingerprints” of the atoms. 
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Lab Procedure 
 
In this experiment, you will measure the wavelengths of photons emitted by hydrogen and by a “mystery 
gas,” which you will attempt to identify by its unique spectral signature. The emission is produced by 
running an electrical current through a tube of gas (a discharge tube). The energy supplied by the current 
causes the electrons in the individual gas atoms to jump from their ground states up into one of the excited 
states. The electrons then spontaneously jump back towards the ground state, losing the gained energy by 
emitting photons of light at specific wavelengths. The glow that you will see from the gas tube results from 
these emitted photons. The set of photons emitted from a glowing gas are referred to as the gas’s emission 
lines. Later in the lab, you will also examine the emergent spectrum from several common sources of 
household lighting. 
 
EXERCISE 1:  The Hydrogen Spectrum 
 
In the simplest of all atoms, the hydrogen atom, the nucleus consists of a single proton and the electron 
cloud contains a single electron. Figure 2 schematically illustrates the hydrogen atom. The single proton is 
at the center and the single electron may occupy one of the discrete energy levels labeled n = 1, 2, 3… in 
the Figure. The n = 1 level is hydrogen’s ground state. Note that hydrogen has many energy levels and only 
the first six are shown in Figure 2. 
 
The wavelengths shown in Figure 2 (in units of nanometers, or nm) are those corresponding to the photons 
that would be emitted by an electron jumping between the two energy levels connected by the solid lines. 
Notice that jumps ending at the n = 1 level (called the “Lyman series”) produce photons with ultraviolet 
wavelengths, and those ending at n = 3 (“Paschen series”) produce infrared photons. Neither of these can 
be directly observed by the naked eye. The n = 2 level, however, is the “Goldilocks” level. Electron jumps 
ending at n = 2 produce photons in the optical spectral region, and thus are visible to the naked eye. These 
are known as the “Balmer series” or the “Balmer lines.” There are many other series of transitions involving 
higher energy levels than shown in the figure. These involve photon energies increasingly far into the 
infrared region. 
 
The first step in the lab will be to view and measure the wavelengths of three members of the Balmer series. 
The three emission lines you will see – red, blue-green, and violet – all come from electron jumps that end 
at the n = 2 energy level, as follows: 

Figure 2:  The energy levels in a hydrogen atom 
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n = 3 → 2: [red] 
n = 4 → 2: [blue-green] 
n = 5 → 2: [violet] 

 
Some of you may have really ultraviolet-sensitive eyes and see a fourth line, corresponding to 
 

n = 6 → 2: [really violet] 
 
You will accomplish the measurements by using a simple spectrometer, which is shown schematically in 
Figure 3 below. With this setup, you will view the hydrogen discharge tube through a diffraction grating, 
which is a piece of transparent glass or plastic with many parallel grooves etched closely together on its 
surface. The grating acts much like a prism, dispersing light into its component colors. As light from the 
discharge tube passes through the grating, its direction of travel is altered so that it appears to the eye to 
originate from a location displaced from the discharge tube. The size of the displacement depends on the 
wavelength of the emission line. 
 
In your experimental setup, position the meter stick so that the hydrogen discharge tube is as close to its 
center. The emission lines will be seen projected against the meter stick. One spectrum will appear projected 
to the right of the center of the meter stick and an identical spectrum projected to the left. Even slight 
misalignment of the grating in your spectroscope can shift the spectrum to the left or right on the meter 
stick. To correct for this, you must average the distance s of a line in the left spectrum from the center of 
the meter stick with the corresponding distance in the right spectrum. The easiest way to do this is to record 
the number from the meter stick corresponding to the left position of a line and then from the right 
position. Record these values to the nearest millimeter in the top part of Table 1. The positive difference 
(or absolute value of the difference) of these numbers divided by two gives the best estimate of s. If you 
see two violet lines of hydrogen, measure the position of the brighter one. 
 
 
Now measure the value of x to the nearest millimeter. As indicated in Figure 3, this is the distance between 
the front face of the meter stick and the transmission grating: 
 

x = _______ cm 
 

Figure 3:  The experimental setup 
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The wavelength of the individual emission lines, λ, can now be determined from the following relation: 
 𝜆𝜆(cm) =  

𝑠𝑠(cm)

𝑔𝑔(grooves/cm) × �𝑥𝑥2(cm2) +  𝑠𝑠2(cm2)
 (3) 

 
where x is the distance between the grating and the front face of the meter stick, s is the projected distance 
between the emission line and the discharge tube, and g is the number of grooves per centimeter on the 
diffraction grating. The wavelength λ will be in centimeters if x and s are in centimeters and g is in 
grooves/cm. Your diffraction grating has g = 5,000 grooves/cm. 
 
Calculate the wavelength in centimeters for each emission line you observe using Equation 3 and then 
convert these into units of Angstroms (1 Å = 10 -8 cm). Record these data in the lower part of Table 1. 
 

Question 1:  How close were your measured wavelengths to the actual values? The red line 
(known as “Hα”) has a wavelength of 6563 Å, the blue-green line (“Hβ”) has λ = 4861 Å, and 
the violet line (“Hγ”) has λ = 4341 Å. What are the absolute differences between your results 
and these true values? What are the percent errors? The percent error is given by: 

 
 %-error= 

actual value - observed value
actual value

 × 100% (4) 
 

Do you notice any sign of a “systematic error” in your results? (I.e., are all measurements too 
high or too low?) If so, how big is this systematic error? Any ideas on how this might arise? 

 
EXERCISE 2:  Identifying a “Mystery Gas” 
 
Now switch your hydrogen discharge tube with a tube supplied by your instructor, containing a “Mystery 
Gas.” (Labeled “A”, “B”, “C”.) Be careful! The tubes are fragile and the hydrogen tube may be hot. If you 
are not comfortable switching the tubes, ask your instructor for assistance. Observe your Mystery Gas 
through the diffraction grating and fill in Table 2. Measure the wavelengths of as many individual lines as 
you can. (Add more lines to Table 2 if you need to.) Make sure to list which Mystery Gas tube you have 
chosen to examine (i.e., “A”, “B”, or “C”). Compare your colors and wavelengths with the atomic spectrum 
wall chart in the lab or with Figure 4 at the back of the lab. 

 
Question 2:  What kind of gas do you think your mystery tube is filled with? What features do 
you see that lead you to this conclusion? Are there any observed features not consistent with 
your selection? 

 
EXERCISE 3:  The Spectra of Common Light Sources 
 
Go to the station at the back (or front) of the lab room, where your instructor has set up spectroscopes for 
you to observe the spectra of three common types of light bulbs: incandescent, LED, and compact 
fluorescent (“CFL”). Study the spectra carefully and answer the following questions:  
 

Question 3:  What does the spectrum of the incandescent bulb look like? Describe its 
properties. Which of the three types of spectra in Figure 1 most resemble this spectrum? What 
similarities and differences do you see between this spectrum and those you observed in 
Exercises 1 and 2? Does this spectrum tell you something about the physical process the bulb 
uses to generate light?  

 
Question 4:  What does the spectrum of the LED bulb look like? Describe its properties.  
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Which of the three types of spectra in Figure 1 most resemble this spectrum? What similarities 
and differences do you see between this spectrum and that of the incandescent bulb? Do you 
notice anything about the temperature of the LED bulb compared to the incandescent bulb? 
Does this tell you anything about the efficiency of each bulb? 

 
Question 5:  What does the spectrum of the CFL bulb look like? Describe its properties.  
Which of the three types of spectra in Figure 1 most resemble this spectrum? What similarities 
and differences do you see between this spectrum and those you observed in Exercises 1 and 2 
and for the other bulbs in this exercise? Does this spectrum tell you something about the 
physical process the bulb uses to generate light?  

 
Note, you may do a search on the internet to find out a little more about the types of bulbs you are looking 
at and the properties of their emitted spectra. One possible site can be found at 
www.comsol.com/blogs/calculating-the-emission-spectra-from-common-light-sources. 
 
 
 

*** EXTRA CREDIT *** 
Note: because this is extra credit, you may not ask your instructor for help! 

 
EXERCISE 4:  The Size of an Atom 
 
The size of an atom is determined by the size of its electron cloud. For most atoms this ranges in radius 
from about 0.3 to 3 Angstroms. As per the discussion in the Introduction, this size can vary for a given 
atom, depending on whether its electrons are in excited states or not. For hydrogen, the electron is usually 
found in the ground (n = 1) state, which has a radius of 0.53 Angstroms. This value, known as the “Bohr 
Radius” is usually considered to be the radius of a hydrogen atom. 
 

Question 6:  So, in more understandable term, how big is a hydrogen atom? Assuming the 
Bohr Radius, how many hydrogen atoms would you have to line up side-by-side to span 1 inch?  
How many hydrogen atoms would it take to fill up the volume of a sugar cube, i.e., 1 cm3?  
Show all your work and explain your calculations. 
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TABLE 1: Hydrogen 

n Line Color Left Position Right Position s = (Right-Left)/2 
(cm) (cm) (cm) 

3 Red       
4 Blue-Green       
5 Violet       
          
          

n Line Color λ λ   
(cm) (A)   

3 Red       
4 Blue-Green       
5 Violet       

 
 

TABLE 2 : Mystery Gas ________ 

 Line Color Left Position Right Position s = (Right-Left)/2 
(cm) (cm) (cm) 

        
     
     
     
     
        
        
          
          

 Line Color λ λ   
(cm) (A)   

        
     
     
     
     
        
        

 
 



C-8 
 

 Figure 4:  Emission spectra of some common gases 
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Lab D 
Introduction to Optics 

 
 
 
PURPOSE:   
 
To study the ways in which light is refracted through lenses of various shapes, leading to an understanding 
of the principles behind the function of an astronomical telescope. To build and test a simple telescope 
using the Optics Bench. 
 
MATERIALS: 
 
Optics Bench kit (including lenses, mirrors and light sources), cotton gloves, Optics Bench simulation 
program, Microsoft Excel 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 1: Clockwise from top left: a 
selection of lenses; Keck 10-meter 

reflecting telescope, image formation 
in the human eye. 
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Introduction 
 

(NOTE: your instructor may ask you to answer introductory questions 
1 thru 5 as a pre-lab exercise) 

 
SOME BACKGROUND: 
 
In many ways, light can be thought of as a wave of energy propagating thru space (an “electromagnetic 
wave”). One of the properties of these waves is that they can change direction when they exit or enter a 
different medium as, for example, from air into glass or water. This property is called refraction. The 
amount of refraction of the light wave depends on a property of the medium known as the index of 
refraction. If you have ever looked into a fish tank or – as illustrated in Figure 2 – at a straw in a glass of 
water, you have probably noticed the strange affects that arise from this phenomenon. 
 

 
Now let’s look at what happens when light passes through a convex lens. This is a smooth, transparent, 
circular piece of glass which is thicker in the middle than around the edges, as shown in the top half of 
Figure 3. Light from a very distant point source (which could be a star) arrives at this lens from the left as 
a bundle of light rays parallel to the principal axis of the lens (dotted line). The rays are refracted as they 
pass through the two surfaces of the lens and intersect on the right at point F, known as the focus or focal 
point, which is located a distance f from the lens center. This behavior gives rise to the general name for 
this type of lens, namely, a converging lens. The distance f is called the focal length and is often used to 
characterize a lens. It is usually measured in meters, centimeters, or millimeters. Importantly, an image of 
the distant object, called a real image will be formed at point F. That is, if a screen (or a piece of paper) 
were placed at point F, an image of the distant source would appear projected on the screen  
 
For astronomical uses, the important characteristic of a converging lens is its ability to gather and 
concentrate light into a small place. This is governed by the physical size of the lens. It is pretty 
straightforward to imagine that the larger the lens, the more light rays it will intercept. The more light rays 
a lens can intercept and concentrate in one place, the brighter the image will be. Thus, bigger lenses can 
form detectable images of fainter objects, such as stars or distant galaxies. In fact, the amount of light a lens 
can intercept is related to the area of the lens, which is proportional to the radius R of the lens squared.  
(Recall that the area of a circle is given by A = πR2.) 
 
A different sort of behavior arises from a concave lens, which is a lens that is thicker around the edges than 
at the center, as shown in the lower half of Figure 3. This shape causes an incoming beam of parallel light 
rays to spread out and, as a result, this type of lens is known as a diverging lens. Due to the divergence, the 

                                                          Figure 2:  Refraction 

http://en.wikipedia.org/wiki/Refractive_index
http://en.wikipedia.org/wiki/Refractive_index
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light rays appear  to emanate from a position at the focal point F on the same side of the lens as the distant 
object. Concave lenses do not form real images. I.e., a screen placed at point F will do nothing except block 
the incoming beam of light! 
 
IMAGE FORMATION WITH CONVEX LENSES: 
 
We’ll now consider objects that are not distant point sources, but rather have a larger angular size, i.e., 
extended objects. Light from a point on such an object spreads out, striking a convex lens as seen in Figure 
4 below: 
 
The sample light rays 1, 2, and 3 that travel from the tip of the arrow through the lens all take different 
paths. Ray 1 starts out parallel to the principal axis of the lens (dotted line) and is refracted through the 
focus on the right side of the lens. Ray 2, which happens to travel through the center of the lens, is not 
refracted at all and continues until it crosses the path of Ray 1. Ray 3 travels in such a way that it passes 
through the focus on the left side of the lens and is refracted into a ray parallel to the axis of the lens and 
intercepts Rays 1 and 2.  If we trace rays from other parts of the object through the lens we will find that 
the lens forms an inverted real image of the object at di. Once again, this is known as a “real” image 
because, if a piece of paper or a CCD image sensor (such as in your camera or cell phone) were placed at 
this point, an image of the object would be seen or recorded. It can be shown – using basic geometry – that 
the location of a real image is given by:  
 

 
1
𝑑𝑑𝑖𝑖

=  
1
𝑓𝑓
−

1
𝑑𝑑𝑜𝑜

 (2) 

 
where do and di are the object and image distances, respectively, and f is the focal length of the lens. If an 
object is extremely far away (i.e., large do), then the image forms at the focal point. The human eye functions 
exactly as shown in Figure 4. The lens of our eye forms a real image on the back of our eyeball (the retina) 

Figure 3:  Refraction through convex and concave lenses 
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and, yes, it is upside-down. A healthy eye is able to focus on both nearby and distant objects by adjusting 
its focal length so that the image always forms on the retina.  (See Figure 1 on the first page of the lab.) 
 
THE REFRACTING TELESCOPE: 
 
A refracting telescope uses two (or more) lenses arranged as shown in Figure 5 below. These telescopes 
utilize the ability of lenses to both concentrate light from a larger area into a smaller area and to provide 
magnification of the resultant image.  Essentially, the larger objective lens gathers a lot of light from the 
source, producing a bright real image, and then the eyepiece lens directs a magnified version of this image 
into our eyes (or a camera).  The eyepiece is positioned so that its focus coincides with position of the 
real image formed by the objective lens.  Figure 5 shows the case for a very distant object, for which the 
real image is located at the objective’s focal point. The size of the objective lens, which is always convex, 
determines a telescope’s light gathering power.  Telescope eyepieces can consist of either convex lenses 
or concave lenses, as shown in the top and bottom portions of Figure 5, respectively.  Notice that the 
convex and concave eyepieces are located on opposite sides of the objective’s real image. The chief 
difference in the final image produced by the telescope is whether it is inverted (convex eyepiece) or 
upright (concave eyepiece).  
 
It can be shown that the magnification of these simple telescopes is given by the ratio of the objective lens 
to eyepiece lens focal lengths, regardless of whether the eyepiece is convex or concave: 
 

 𝑚𝑚 =  
𝑓𝑓𝑜𝑜
𝑓𝑓𝑒𝑒

 (3) 

 
Telescopes usually come equipped with several eyepieces, of differing focal lengths, providing different 
levels of magnification. 
 
INTRODUCTORY QUESTIONS: 
 

Question 1:  About how long do you think the focal length of the lens in a human eye is?  How 
did you arrive at this estimate? 

 

Figure 4:  Image formation with a convex lens 



 

 

D-5 

 
Question 2:  Why do we see objects right side up if the image on our retina is upside down? 

 
Question 3:  In the days before smart phones and the internet, children used to amuse 
themselves outdoors on sunny days using single convex lenses to make small fires.  Given what 
you have learned above, how is this possible?  
 
Question 4:  The Villanova University Public Observatory, which many of you will use this 
semester, has an objective element with a diameter of 14” and a focal length of f = 3900mm. 
The focal lengths of the eyepieces on this telescope are 10mm, 15mm, 23mm, and 32mm. What 
magnification is achieved with each of these eyepieces? Explain your results. I.e., what 
equations and inputs did you use? 
 

  

Figure 5:  Simple telescopes utilizing convex (top) and concave (bottom) eyepieces 
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Lab Procedure 
 

In this lab, you will investigate the properties of lenses and build a refracting telescope using both a 
computer simulation and a set of real lenses. 
 
I. Working with a Simulation 
 
First let’s examine the properties of lenses using a simulation of an optical bench. Begin by starting the 
Optics Bench program found in the “MSE Astrolab” folder on your computer.  Be sure that this program 
opens in the Internet Explorer browser and set the browser’s “zoom” to 200%.  You will be presented with 
the following screen:  

 
The yellow line through the middle is the optical axis (or principal axis) of our system. The buttons on the 
top allow you to pick various types of sources and the buttons on the bottom are for selection of various 
optical elements. The yellow rectangle on the bottom left indicates the x and y positions of the cursor on 
the screen. 
 
The first step is to add a convex lens to the simulation: 
 
• Put the cursor on the Lens box and left click the mouse. The box will depress but nothing much else 

will happen. 
• Move the cursor to the yellow line and left-click mouse. A convex lens symbol will appear. The 

position of the lens along the principal axis (x) and the lens’ focal length (fl) will be displayed below 
the lens. 

• Move the cursor over the lens until the cursor shows a hand symbol. Then left-click the mouse and 
hold while dragging the lens to a point near the middle of the screen. The x position will be about 5.  
The screen will look something like this: 

Screenshot 1 
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• Change the focal length of the lens by clicking and dragging either one of the two short vertical white 

lines. After experimenting with this, set the value to about fl = 1.0 (it doesn’t have to be exact). 
 

Question 5:  Imagine two convex lenses of the same diameter and the same composition. One 
is much thicker in the middle than the other. Which lens will have the shorter focal length? 

 
Now add a distant light source and observe the effect of refraction through the convex lens: 
 
• Select the Beam box and place the beam source near the left edge of the screen. These parallel rays 

simulate the light coming from a very distant source, as in astronomical applications. 
 

Notice where the parallel rays converge. Try moving the beam source around, noting the location of the 
convergent point. Try changing the focal length of the lens and, again, moving the beam source around 
and noting the location of the convergent point. An inverted real image of the distant source is formed at 
this location. I.e., a screen or a CCD detector placed here would record an image of the source. 

 
Question 6:  Where is the convergent point with respect to the lens’ focal point? How does the 
convergent point change when the beam source is moved around?  How does it change when 
the focal length of the lens is changes? 

 
Next add a nearby light source and observe the image formation: 
 
• Left-click the beam source to activate it and then click the Clear Active box. This will erase the beam, 

leaving only the lens on the screen. Return the focal length of the lens to 1.0. 
• Select the Object box and place the object (a vertical arrow) at approximately x = 3.0. Set the height 

of the object to about h = 0.5. The screen should look something like this: 
 

Screenshot 2 



 

 

D-8 

The light rays from a nearby source do not arrive at the lens parallel and, as a result, the real image 
formed by the lens (labeled “1” in the simulation) is not located at the focal point of the lens. (This 
situation is analogous to that shown in Figure 4 of the Introduction.) Now move the source around 
and observe how the location of the real image changes with respect to the focal point of the lens. 
 

Question 7:  When you move the object closer to the lens, how does the location of the real 
image change? When you move it farther away? If you could move the object really far away 
– off the left side of the screen – where do you think the real image would be located? Is this 
consistent with expectations from Equation 2? Explain. 

 
Now it is time to build a telescope. To do this, we must add a second lens to the simulation. 
 
• Click the Lens box and place the new lens such that its focal point lies exactly on the real image 

(“1”) formed by the first lens. This lens has a focal length of 0.5. The simulation should now look 
like this: 

 

 
As noted in the Introduction, the first lens in the simulation (the one closest to the object) is called the 
objective lens, and the second lens is called the eyepiece. The objective lens always has a longer focal 

Screenshot 3 

Screenshot 4 
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length than the eyepiece. Notice that the rays exiting the eyepiece are parallel to each other. This occurs 
when the telescope is perfectly focused. These parallel rays will be reconstructed by a normal human eye 
into a sharp image of the light source.  The image will appear magnified by the ratio of focal lengths, as 
shown in Equation 3. 
 
When an object is relatively near, as in terrestrial applications, the separation between the objective and the 
eyepiece lenses depends on the object distance. To see this, perform the following experiment: 
 
• Note the current separation between the objective and eyepiece (i.e., record the x-positions and 

compute the difference). 
• Move the object farther from the objective (but not all the way to the left of the screen), refocus the 

telescope (i.e., make the rays exiting the eyepiece parallel) and measure the separation between the 
objective and eyepiece. Note the location of the eyepiece’s focal point with respect to the real image 
formed by the objective (“1”). 

• Move the object all the way to the left of the screen and repeat the step above. 
 

Question 8:  After you first moved the object, was the telescope till in focus?  I.e., were the rays 
exiting the eyepiece still parallel? After you refocused, how did the new separation between 
objective and eyepiece compare to the original value? After the second move of the object (all 
the way to the left), did you need to refocus the telescope again? How does the new separation 
between objective and eyepiece compare with the previous values? 
 
Question 9:  In general, where must the eyepiece be located, with respect to the real image 
formed by the objective, for a telescope to be focused? How does this relate to what you are 
doing when you turn the focus wheel of, say, a pair of binoculars? Once an astronomical 
telescope is focused, should it ever need to be refocused? Explain. (Hint, an “astronomical” 
telescope is only used to observe extremely distant objects. For the purposes of Equation 2, the 
distances can be considered infinite.)  

 
 
II. Working With Real Lenses: 
 
OK, now let’s try the above experiments using a real Optical Bench and actual lenses.  Please note that 
you should never touch the surfaces of the lenses with your bare fingers.  Use lens paper or cotton gloves, 
if available, or only handle the lenses by their edges. 
 
MEASURING FOCAL LENGTHS: 
 
• Mount the light source box at one end of the optical bench, so that it is located at 0.0 cm according 

to the metric scale on the side of the optical bench. Plug it in. An illuminated target should be visible. 
• Mount the white screen at the other end of the optical bench (the exact position is not important, since 

you’ll be moving the screen).  
 
You will now use the convex lenses to form real images and test Equation 2. 
 
• Remove the 250 mm focal length convex lens from the case and mount it at a position of 60.0 cm 

according to the metric scale of the optical bench. 
• Move the white screen back and forth until a sharp image of the light source appear on it.  Do this 

carefully to achieve the sharpest possible image. This setup is analogous to that shown in Figure 4 



 

 

D-10 

and you are looking at the real image formed on the screen by the 250 mm convex lens!  Note the 
size and orientation of the image (i.e., rightside-up or inverted). 

• Measure the values of do and de (see Figure 4) and enter them, along with the image orientation, in 
Table 1. 

• Repeat the three steps above for the 200 mm, 100 mm, and 50 mm convex lenses, always placing the 
lenses at the 60.0 cm point of the optical bench. Each time, note the properties of the real images 
formed by the convex lenses. 
 

Table 1 

Optical Element do di Image Orientation? f 
(cm) (cm) (cm) 

250 mm convex lens         

200 mm convex lens         

100 mm convex lens         

50 mm convex lens         

 
 
Now use Equation 2 to compute the focal length inferred for each lens by your measurements of do and de.  
Enter the results in the last column of Table 1. 
 

Question 10:  How did you do? I.e., how did your computed focal lengths compare with the expected 
values (i.e., 250 mm, 200 mm, etc.)?  Can we trust Equation 2 to predict how a real image is formed 
by a convex lens?  Does the size of the real image produced by a convex lens depend on the focal 
length of the lens?  If so, how? 

 
Try the same experiment with a concave lens: 
 
• Remove whichever convex lens is currently on your optical bench and insert the 150 mm concave 

lens at a position of 60.0 cm according to the metric scale of the optical bench. 
• Carefully move the screen around and try to form a real image on it. 

 
Question 11:  Were you able to form a sharp real image on the screen using the concave lens?  Is 
this consistent with discussion in the lab Introduction? How? 

 
BUILDING A TELESCOPE WITH A CONVEX EYEPIECE: 
 
Now it’s time to build an actual refracting telescope using your lens kit. You will use the 250 mm lens as 
the objective and the 100 mm convex lens as the eyepiece 
 
• Place the 250 mm convex lens on the optics bench at a position of 60.0 cm. 

 
The eyepiece (the 100 mm convex lens) must be placed at a position such that the telescope will be in focus. 
As you learned above, this lens should be located so that its focal point coincides with the real image formed 
from the objective lens (as in Figure 5 or Screenshot 4). As a result, the distance between the eyepiece 
lens and the objective lens is:  
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 𝑑𝑑(eyepiece-to-objective) = 𝑑𝑑𝑖𝑖 + 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 (4) 

 
Compute this distance using the value of di that you already measured for the 250 mm lens (in Table 1) and 
the focal length f of the100 mm eyepiece lens (i.e., 100 mm). Record this predicted value in the first row 
of Table 2. 
 

Table 2 

Telescope with 100 mm convex eyepiece 

d(eyepiece-to-objective)predicted  cm 

d(eyepiece-to-objective)observed  cm 

Telescope with 150 mm concave eyepiece 

d(eyepiece-to-objective)predicted  cm 

d(eyepiece-to-objective)observed  cm 
 

 
• Place the 100 mm convex eyepiece lens on the optical bench such that its distance from the objective 

is the value you just entered in Table 2. 
 
Observe the lighted target through the eyepiece. Adjust the focus by moving the eyepiece, if necessary, to 
get the clearest possible image. If you move the lens, record the new eyepiece-to-objective distance in the 
second row of Table 2. 
 

Question 12:  Describe the image you see through the eyepiece. Is the image sharp or blurry? (Note: 
if you answered “blurry,” go back and fine-tune the location of the eyepiece!) What is its orientation?  
What is its theoretical magnification (from Equation 3)? Is this consistent with an “eyeball” estimate 
of the magnification? Did you need to adjust the focus of the telescope? If so, what reasons can you 
think of that may have led to the predicted focus being less than optimal? 

 
BUILDING A TELESCOPE WITH A CONCAVE EYEPIECE: 
 
As a final exercise, you will replace the convex eyepiece with a concave one. In this case, the predicted 
separation between the eyepiece and objective lenses is given by:   

 
 𝑑𝑑(eyepiece-to-objective) = 𝑑𝑑𝑖𝑖 − 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 (5) 

 
The difference between Equations 4 and 5 arises because, as can be seen in Figure 5, a concave eyepiece 
must be placed between an objective lens and its real image. Compute this predicted distance using the 
value of di that you already measured for the 250 mm lens (in Table 1) and the focal length f of the150 mm 
concave eyepiece lens (i.e., 150 mm). Record this predicted value in the bottom half of Table 2. 
 
• Remove the convex eyepiece from your telescope. 
• Place the 150 mm concave eyepiece lens on the optical bench such that its distance from the objective 

is the value you just entered in Table 2. 
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Once again, observe the lighted target through the eyepiece. Adjust the focus by moving the eyepiece, if 
necessary, to get the clearest possible image.  If you move the lens, record the new eyepiece-to-objective 
distance in the bottom row of Table 2. 
 

Question 13:  Describe the image you see through the eyepiece. Is the image sharp or blurry? (Note: 
if you answered “blurry”, go back and fine-tune the location of the eyepiece!) What is its orientation?  
What is its theoretical magnification (from Equation 3)? Is this consistent with an “eyeball” estimate 
of the magnification? Did you need to adjust the focus of the telescope? If so, what reasons can you 
think of that may have led to the predicted focus being less than optimal? 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
  

Before leaving the lab please do the following 
 

1. Put all components of the optical kit back in the box in the original locations and let the instructor verify 
that all parts are there. 

2. Place the white gloves back in the proper container (small or large) on the front desk. 
3. Turn in your lab report. 
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Lab E 

Building a Galileoscope 
 

 
 
PURPOSE:   
 
To construct a replica of one of the first telescopes used by the Italian physicist/astronomer Galileo Galilei in the 
early 1600’s.  To make observations with the telescope and characterize the properties of the lenses and the equality 
of the images. 
 
MATERIALS: 
 
“Galileoscope” telescope kit. 
 
 

  

Clockwise from top: Galileo’s 20-
power refracting telescope, Keck 10-
meter reflecting telescope, modern 
small ‘go to’ telescope. 
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The Telescope 
 
Sometime in the early 1600s, so the story goes, some Dutch children noticed that if you looked through two convex 
lenses held in line, you could see distant objects more clearly.  History, however, credits the Dutch opticians Hans 
Lippershey, Zacharias Janssen, and Jacob Metius with purposely making the first telescopes.  They applied for a 
patent for the device in 1609, but were refused because the device was so easy to duplicate.  Lippershey noted that 
“counting coins from afar” was a suitable use for the invention!  A year later, the Italian scientist Galileo made 
many improvements to the telescope design and was one of the first to use it to systematically study the night sky.  
Most telescopes of the time were used to observe terrestrial objects, such as ships popping up over the horizon, or 
as amusement.  Low power “telescopes” were also used as opera glasses.  These telescopes utilized a large 
“objective” lens and a smaller “eyepiece” lens and are known as refracting telescopes. 
 
As technology improved, it became possible to make bigger and bigger lenses for telescope use.  As the lens size 
increased, however, it became clear that there was a limit to how large a practical telescope lens could be.  The 
reason is that, above a certain size, the lens actually sags under its own weight and is no longer able to hold its shape 
under the force of gravity.  This size turns out to be about 40 inches in diameter.  Another problem with lenses is 
that they have two sides that need to be polished to the correct shape to form an image. 
 
Early in the history of optics making it was learned that a curved polished or silvered mirror could, like a lens, form 
an image.  Anyone who has looked at a silvered Christmas ornament has probably seen this effect.  The use of 
mirrors as the main optical element of a telescope has a number of advantage over the use of lenses.  Notably, using 
modern technology, very large, lightweight mirrors can be produced whose precisely-ground curved shapes can be 
maintained through the use of actuators mounted on the backs of the mirrors.  These kinds of telescopes are known 
as reflecting telescopes.  All large modern telescopes are of the reflecting design.    
 
Astronomers use telescopes to collect enough light to allow study of astronomical objects which are much fainter 
that the human eye can see.  For this reason, telescopes are sometimes called “light buckets.”   
 

Question 1:  Consider that the human eye has a maximum pupil opening of only about 7mm, compared 
to even a small telescope whose objective (front) lens might have a diameter of 50mm or more. Which 
do you think could collect more light from a star?  Why? 

 
Question 2:  Is the amount of light collected directly proportional to the diameter of the instrument 
(i.e., eye or telescope), or to some other property? Explain. 

 
 

The Galileo Telescope 
 

The telescope you will be building in lab today is a 2009 Galileoscope™, which was created to help celebrate the 
400th anniversary (in 2009) of the Italian physicist/astronomer Galileo’s first use of the telescope to study the sky.  
The Galileoscope is a model of the type of telescope used by Galileo and other Renaissance astronomers in the 
early 17th century, but with modern high-quality lenses (which are vastly better than the primitive optics of the 
17th century).   You can read more about Galileo’s telescopes and discoveries at 
http://www.skyandtelescope.com/astronomy-resources/stargazing-with-galileo/ 
 
This telescope is a two lens system, consisting of a large objective lens and a smaller eyepiece.  The main 
difference between Galileo’s telescope and the simple telescope you built in the previous lab is that the Galileo 
design uses a concave lens for the eyepiece, as shown in the figure below.  The advantage of this design is that a 
concave eyepiece keeps the image right side up and is more convenient for terrestrial viewing, which was the 
main use of telescopes in Galileo’s time. 

http://en.wikipedia.org/wiki/Hans_Lippershey
http://en.wikipedia.org/wiki/Hans_Lippershey
http://en.wikipedia.org/wiki/Zacharias_Janssen
http://en.wikipedia.org/wiki/Jacob_Metius
http://www.skyandtelescope.com/astronomy-resources/stargazing-with-galileo/
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Notice the placement of the eyepiece relative to the focus of the objective lens compared with the simple 
telescope you constructed in the last lab. (The focus of the objective lens is behind the eyepiece lens.) 
 
It can be shown that the magnification produced by these simple telescopes is given by the ratio of the objective 
lens focal length to the eyepiece lens focal length: 
 

 𝑚𝑚 =  
𝑓𝑓𝑜𝑜
𝑓𝑓𝑒𝑒

 (1) 

 
Galileo’s original telescopes had a magnification of about a factor of 25, allowing him to observe details in the 
sky that had never been seen before. 
  

Figure 1: Image formation in Galileo’s telescope. 
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Lab Procedure 
 
Open the Galileo Telescope box and remove the top cardboard parts holder.  Remove the second layer cardboard 
tray and set to one side. 
 
The telescope parts should look like this:  
 

 
 
Take careful note of where all the parts are located and how they fit into the cutouts in the cardboard.  You must 
return the parts to their proper places for the next class to use.   You must also have your instructor check that all 
of the pieces are in the proper place. 

 
Be sure to handle the lenses only by their edges, with a piece of tissue paper or cotton gloves, if available. 

 
 

O-rings and nut 

Lenses 
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Parts List (in order of assembly):  
  
A – telescope main tube halves (2) K – main eyepiece barrel halves (2) 
B – V-block bases/stands (2) L – auxiliary eyepiece barrel halves (2) 
C – 50-mm glass objective lens M – small main eyepiece lenses (4) 
D – ¼-20 tripod nut N – tiny, thin eyepiece ring/field stop 
E – focuser tube halves (2) O – large main eyepiece clamp ring 
F – small main-tube clamp ring P – small eyepiece clamp rings (2) 
G – small rubber O-rings (2) Q – tiny auxiliary eyepiece lenses (2) 
H – Sun-warning sticker R – Barlow lens tube 
I – large lens shade/dew cap S – auxiliary eyepiece cap 
J – large rubber O-rings (2)  

 
 
Step 0. 
 
Measure the diameter D of the objective lens and its focal length f in mm.  You can measure the focal length by 
pointing the lens out the window and forming an image on a piece of paper behind the lens.   Remember (from 
last week’s lab!) that the distance to the object do, the distance to the image di, and focal length f are related by the 
formula  
 

 
1
𝑓𝑓

 =  
1
𝑑𝑑𝑜𝑜

 +  
1
𝑑𝑑𝑖𝑖

 (2) 

 
If do is very large (i.e., if you are looking out the window) you may use a simplified version of the formula to 
determine f, namely,  
 
 𝑓𝑓 ≈ 𝑑𝑑𝑖𝑖 (3) 
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Question 3:  What is the focal length f of the objective lens? 
Question 4:  What is the diameter D of the objective lens? 

 
 

Step 1. 
 
Lay the telescope main tube halves (A) on the table, perhaps setting one of them in the V-
block stands (B).  Note that the objective lens (C) is actually two lenses cemented together.  
One lens is thinner, and the other thicker.  Insert the objective lens into the groove at the 
end of one telescope main tube half so that the thinner lens points forward, out of the 
telescope as shown at right. 
 
Step 2. 
 
Insert the ¼”-20 tripod nut (D) into the slot in the telescope main tube half.  To 
seat the nut securely, make sure it is oriented with one of its “points” (not one 
of its flat sides) facing up, as shown in the photo at right.  
 
 
 
 
Step 3. 
 
Lay the two focuser tube halves (E) on the table, oriented with their 
interiors facing up.  Note that one end of each tube is rough on the inside, 
and the other end is smooth.  On one tube half, the smooth end has two U-
shaped cutouts; they’re at the bottom left in the photo at left.  Orient the 
tube halves so that the two smooth ends match and the two rough ends 
match, as shown in the photo at right.  
 
 
 
Steps 4 & 5.  
 
Join the two focuser tube halves and hold them together.  
Slide the small main-tube clamp ring (F) onto the focuser 
tube, with the wider end of the ring facing away from the 
end of the tube with the two U-shaped cutouts.  Secure the 
two ends of the focuser tube with the two small rubber O-
rings (G), which fit in the groves around each end of the 
tube.  The O-rings look too small to fit, but they will 
stretch. 
 
 
Step 6. 
 
Lay the completed focuser tube assembly into the back end of the main tube.  As shown below, make sure that the 
end of the focuser tube with the two U-shaped cutouts is protruding out the back of the telescope main tube, along 
with the main-tube clamp ring.  The other end of the focuser tube should lie between the two baffles at the back of 
the main telescope tube as shown in the photo below. 
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Step 7. 
   
If not already done, peel the backing off the Sun-warning sticker (H) and affix the sticker to the second half to the 
telescope main tube (A), about 25mm (1 inch) from the narrow end as shown in the photo below.   
 

DO NOT LOOK AT THE SUN!  SEVERE EYE DAMAGE WILL OCCUR 
(as well as damage to the optics of the telescope). 

 
 
Step 8. 
 
Place the second half of the main tube over the first half (the one already on the table or in the V-block stands), as 
shown below.  Make sure the objective lens and the ¼-20 tripod nut fit securely into their slots in the top half of the 
tube. 
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Step 9. 
 
Secure the body of the telescope together by sliding the main tube clamp ring (F) onto the back.  Place the two large 
O-rings (J) around the telescope main tube in the channels provided for this purpose (see arrows in photo below).  
These will hold your telescope together more securely.  The O-rings will stretch enough to fit over the tube.  If you 
are unsure, please ask your instructor. 
 

 
Step 10. 
 
As seen above, attach the large lens shade/dew cap (I) onto the front.   
 
 
 

There are two eyepiece barrels.  The wider eyepiece (K), with the larger central opening is the 
main (or “modern”) eyepiece.  We will be using both for this lab, to determine how the different 

eyepiece designs affect the magnification and image quality of the telescope. 
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The “Modern Eyepiece” 
 

We’ll start out using a modern eyepiece consisting of a combination of several lenses.  A complicated 
“compound” eyepiece design such as this yields excellent images but was not practical for Galileo 

because the lenses available to him contained so many flaws that, the more lenses used, the worse the 
image. 

 
 
 
Step 11. 
 
Open the lens packet, shown at right, and note that there are 6 lenses 
included.  For the first experiment we will use the four larger lenses 
in the bottom two rows.  
 
 
 
 
Step 12. 
 
The four modern eyepiece lenses (M) are about 14 mm (a little over a half inch) in diameter.  Handle the lenses 
with the supplied tissue paper, cotton gloves or touch only the edges to avoid fingerprints.  Two lenses are flat on 
one side and concave – curved inward – on the other.  The other two lenses are convex – curved outward – on both 
sides.  Take one of each type of lens and place them together as show in the drawing.  Repeat with the other modern 
eyepiece lenses. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note:  While wearing the cotton gloves, 
you can feel for the curvature of the lenses with your fingers to pick the correct lenses. 

 
 
Step 13. 
 
Take one half of the modern eyepiece barrel (K).  Insert the two eyepiece lens 
pairs (from step 12) into the appropriately-sized slots of the barrel.  Be sure 
the flat sides of the lens pairs point away from each other (see picture on 
right). 
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Step 14. 
 
Insert the tiny, thin eyepiece ring/field stop (N) into the thin slot in the modern 
eyepiece barrel half.  You should now have something that looks like the photo 
at right.  You are almost done with the modern eyepiece.    
 
 
 
 
Step 15. 
 
Join the second half of the modern eyepiece barrel (K) with the first half (the one 
you just assembled), taking care that the lenses and field-stop ring fit into the 
appropriate slots on the second half as you bring the halves together. Secure the 
halves with the large modern eyepiece clamp ring (O), which goes on the other 
end.  The completed modern eyepiece is shown in the photo at right.  
 
 
 
Step 16. 
 
Measure the focal length of this compound eyepiece by forming an image of some distant object on a piece of 
white paper, as you did for the objective in Step 0.  
 

Question 5:   What is the focal length fe of the compound Modern Eyepiece? 
 
 
Step 17. 
 
Insert the eyepiece fully into the end of the focuser tube, as shown in the following sequence of photos:  
 
 
 
 
 
 
 
 
 
 
 
 
Step 18. 

 
Observe a scene through the lab window.  Focus the telescope by sliding the focusing tube (E) back and forth to 
achieve a sharp image.  (The back of the eyepiece should end up about 2-1/2 inches behind the end of the telescope 
barrel.)  Note the properties of the images you see. Measure the magnification of the telescope with the modern 
eyepiece.  You may do this by eye or with the camera on your cell phone, with and without the telescope.   
 

ring/field stop (N) 
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Question 6.  Describe the quality and the orientation of the images you observe through the Modern 
Eyepiece.  Was it easy to find your target?  Was the image sharp?  (Remember to focus the telescope!)  
Are the images upright or inverted? 
 
Question 7.  What magnification did you observe with the Modern Eyepiece?   Explain how you arrived 
at this value. 
 
Question 8.  What is the “theoretical” magnification of the telescope using the modern eyepiece?  (I.e., 
the value based on Equation 1 and your measurements of fo and fe.).  Does it agree with your observed 
value from Question 7?  Which one do you think is more accurate? (Show all steps in your calculation.) 

 
 

 
The “Galilean Eyepiece” 

 
Now we’ll try a simple single-element eyepiece, like one that Galileo used. (Except that this one is 

made of plastic!)  It consists of a single small concave lens which yields upright images as shown in 
Figure 1. 

 
 
Step 19. 
 
The Galilean eyepiece uses one of the smaller lenses (about 10 mm 
in diameter) located in the top row of the lens packet (shown at right).  
The lens we will use is the one that is concave (inward curve) on both 
sides.  You can feel for concavity by touching both surfaces with the 
lens paper or cotton gloves covering your fingers. 
 
 
 
 
 
Step 20.  
 
To make the simple “Galilean Eyepiece,” first lay half of the auxiliary 
eyepiece barrel (L) on the bench and gently place the 10 mm, double concave 
lens in the grove at the center of the barrel.  Make sure it is standing straight 
up, perpendicular to the barrel.  This eyepiece can accommodate 2 lenses in 
this location, so be sure it sits squarely in the grove.  Then join the two halves 
of the auxillary eyepiece and place the auxiliary eyepiece cap (S) over the 
barrel, as shown below, and insert into the telescope.  With this eyepiece, your 
telescope will function like that shown in Figure 1.  
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Step 21. 
 
Once again observe a scene through the lab window. Move the focusing tube (E) back and forth until you get the 
best image.  (The back if the eyepiece will sit about 1-1/2 inches behind the telescope.)  Don’t expect a high quality 
image.  When Galileo made his telescope, the art of lens making was not very well perfected and lenses included 
many air bubbles and usually had a green tint from impurities.  Note the properties of the image you are observing.  
Estimate the magnification of the telescope using the Galilean Eyepiece.  You may do this by eye or with the camera 
on your cell phone, with and without the telescope.  Galileo’s original telescope had about 20x magnification.   
 

Question 9.   Describe the quality and the orientation of the image.  Is it easier or harder to use this 
eyepiece compared to the Modern Eyepiece?  How does the image quality compare with that seen 
through the Modern Eyepiece?  Which eyepiece would you rather use for your own observations?  
Why? 
 
Question 10:   What magnification (m) do you observe with this configuration?  Explain how you 
arrived at this value. 
 
Question 11:   What is the focal length of the concave Galilean Eyepiece?  Since you cannot directly 
measure this quantity for a concave lens, you’ll have to estimate the focal length indirectly. I.e., use 
Equation 1 – you already know two of the three quantities in that equation. (Show all steps in your 
calculation.) 
 
 

 
 
 

Cleanup 
 

Please carefully disassemble the telescope and replace all parts in their proper locations. 
Do not close the box until your instructor has checked the inventory. 
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Lab F 
Classification of Stellar Spectra 

(Adapted from Contemporary Laboratory Experiences in Astronomy) 
 

 
 
PURPOSE: 
 
To become familiar with the appearance of the spectra of main sequence stars.  To learn how to classify 
the spectra of main sequence stars by comparing a spectrum with an atlas of spectra of selected standard 
stars.  
 
EQUIPMENT: 
 
CLEA computer program Stellar Spectra 
 
 
  

Figure 1: The OBAFGKM Spectral Sequence 
(Photo credit: www.noao.edu) 
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Spectral Classification 
 
The German physicist Joseph von Fraunhofer was, in the early 1800’s, the first to notice that the spectrum 
of the Sun was “missing” light at very specific wavelengths. These features, now known as the Fraunhofer 
absorption lines, were then of unknown origin and were simply labeled with letters of the alphabet – as 
shown in Figure 2 below.  
  

It was not until late in the 19th century that astronomers were able to routinely obtain and examine the 
spectra of other stars in large numbers.  The astronomers Fr. Angelo Secchi and E.C. Pickering were 
among the first to notice that the patterns of absorption lines varied among the stars, but that distinct groups 
or “types” could be identified.  This gave birth to the process of spectral classification, in which stars are 
grouped together based on the prominence of certain specific absorption lines.  Building upon this early 
work, astronomers at the Harvard Observatory refined these “spectral types” and named them with letters 
A, B, C, etc.  They also embarked on a massive project to classify spectra – carried out by the trio of 
astronomers, Williamina Fleming, Annie Jump Cannon, and Antonia Maury – which ultimately lead to the 
classification of over a quarter-million spectra. 
 
The early classification systems were based strictly on the appearance of the spectra, with no understanding 
of the physical reasons for the differences among stars. This changed in the 1930’s and 1940’s when it came 
to be understood that the strength of a specific absorption line depends on the abundance of the type of 
atom which absorbs at that wavelength, which – in turn – depends on the chemical composition of the star 
and the temperature and density of its outer layers, where the absorption takes place. Since it turns out that 
most stars have very similar chemical composition, the surface temperature of a star is the main 
determinant of the appearance of a stellar spectrum.   
 
The spectral classification system in widespread use today is a refinement of the work by the Harvard 
astronomers and is called the MK System.  It was introduced in the 1940's and 1950's by W.W. Morgan 
and P.C. Keenan of Yerkes Observatory. This system has seven main temperature classes, OBAFGKM, 
which are ordered by decreasing temperature. The O stars are the hottest stars (with temperatures around 
40,000 K) and the M stars are the coolest (with temperatures around 3,000 K). As a further refinement, the 
major temperature classes are subdivided into subtypes, e.g., B0, B1, B2, … B9.  These are also ordered 
by temperature so that, for example, a B0 star is hotter than a B5 star, and a B9 star in the sequence is 
followed by a cooler A0 star. Sample spectra are shown in Figure 1 on the front page of the lab. Notice the 
systematic change in the appearance of the absorption lines moving down the spectral sequence from the O 
types to the M types. The MK System adds a second dimension to the classification scheme to take into 
account the fact that stars with the same surface temperature can have different sizes. A difference in size 
between two stars with identical surface temperatures results in a difference in their intrinsic luminosities 
and can introduce subtle differences in their spectra – which can be discerned by a skilled classifier. A 
Roman numeral is added to the end of an MK spectral type to indicate a star’s luminosity class: an I indicates 
a supergiant star, a III indicates a giant star, and a V indicates a smaller Main Sequence star.  (There are 

Figure 2: The Fraunhofer lines in the Sun’s spectrum 
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also intermediate types II and IV.) Our Sun is an ordinary Main Sequence star and has a classification in 
the MK System of G2 V. 
 
The spectral type of a star is so fundamental that an astronomer beginning the study of any star will first try 
to find out its spectral type. Detailed analyses performed on many stars have shown that precise 
determinations of a star’s surface composition, temperature and density can be made from study of high-
quality spectra, combined with our current understanding of atomic physics. These fundamental stellar 
properties have been seen to correlate with stellar spectral type. Since stars which have similar spectra have 
similar physical properties, the properties of an unknown star can be quickly inferred from past detailed 
studies of other stars of similar type. A good spectral type thus provides a shortcut to knowledge of a star’s 
fundamental properties.  
 

Lab Procedure 
 
In this lab you will become an expert stellar classifier. Specifically, you will examine the spectra of 20 
unknown stars, determine the spectral type of each star, and record your results along with the reason for 
making each classification. You will compare your unknown spectra with a representative atlas of standard 
spectra and, by looking at the relative strengths of characteristic absorption lines, you will be able to 
estimate the spectral type of the unknown stars to about a tenth of a spectral class, even if they lie between 
the spectral types of the stars in the atlas. To make life a little easier, we will at first confine ourselves to 
the classification of Main Sequence stars (luminosity class V).  Near the end of the lab, you will examine 
the effects of luminosity on the appearance of the stellar spectra.  
 

Part I - ENTERING STUDENT ACCOUNTING INFORMATION 
 
Launch the Stellar Spectra program in the “MSE Astrolab” folder. Click File, Log In to activate the Student 
Accounting screen. Enter your name (first and last). Do not use punctuation marks. When all the 
information has been entered to your satisfaction, click OK to continue, and click Yes when you are asked 
if you are finished logging in. The opening screen of the Spectral Classification lab will then appear. 
 

Part II - SPECTRAL CLASSIFICATION OF MAIN-SEQUENCE STARS 
 
Step 1.  Select File, Run, Classify Spectra. You are now in the classification tool. The screen that you see 
shows three (currently empty) panels, one above another with some control buttons at the right and a menu 
bar at the top. The center panel will be used to display the spectrum of an unknown star, and the top and 
bottom panels will show you spectra of standard stars that can be compared with the unknown. Let us now 
run through the features of the classification tool by classifying the first of the 20 unknown spectral provided 
for practice. 
 
Step 2.  Call up the spectrum of a practice "unknown" star by clicking on the File, Unknown Spectrum, 
Program List. A window will appear displaying a list of practice stars by name. Highlight the star HD 
124320, then click OK. You will see the spectrum of HD 124320 displayed in the center panel of the 
classification screen, as shown in Figure 3. 
 
Until recently, spectra were displayed as photographs of the stellar spectrum, as in Figures 1 and 2, but 
modern spectrographs yield direct measurements of the intensity of light as a function of wavelength and it 
is now common practice to display a spectrum as a plot of intensity (or brightness) of light versus 
wavelength, as in Figure 3. You can compare the two different display methods by choosing File, 
Preference, Display, Comb. (Photo & Trace). The classification tool will now display the HD 124320 
spectrum in both the photograph format (without the color) and the intensity format. These convey the same 
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information but in very different ways. In both cases, wavelength is displayed in units of Ångstroms (Å), 
where 1 Å = 10-10 meter. In other popular wavelength units, this would correspond to 390 to 450 nm 
(nanometers) or 0.39 to 0.45 μm (microns). This is only a portion of the total optical spectral range (~3500–
7000 Å) but contains sufficient spectral features to allow precise and accurate classifications. The intensity 
can range from 0 (no light) to 1 (maximum light). The highest points in the spectrum, called the continuum, 
are the overall light from the incandescent surface of the star, while the dips and dark features are the 
absorption lines produced by atoms, ions, or molecules further out in the atmosphere of the star. You can 
measure both the wavelength and the intensity of any point in the spectrum by pointing the cursor at it and 
clicking (and holding) the left mouse button. (Try it.) The cursor changes from an arrow to a cross, making 
it easier to center on the point desired. The “strength” of an absorption line is often gauged by its depth, 
i.e., the deeper the line, the stronger. 
 
Decide whether you want to do your classifications using the intensity format (which is recommended) or 
the photograph format. If the former, select File, Preference, Display, Intensity Trace.  If the latter, select 
File, Preference, Display, “Grayscale” Photo. 
 
Step 3.  Now you want to find the spectral type of HD 124320 by comparing its spectrum with spectra of 
known type. Call up the comparison star atlas by clicking the File, Atlas of Standard Spectra option. A 
window will open up on which you will see numerous choices, but the atlas you want is the one on top of 
the list, Main Sequence. Select it and click on OK to load the atlas. 
 
Step 4.  The 13 spectra in the Atlas will come up in a separate window – see Figure 4 – but only 4 can be 
seen at one time. You can look at the entire set by dragging up and down on the scrollbar at the right of the 
Atlas window. Do this, and note that a sequence of representative types, spanning the range from the hottest 
to the coolest, are shown. The wavelength range, though not indicated, is the same as in Figure 3. As you 
scroll through the standard stars, notice how the shapes and strengths of the absorption features vary 
systematically as you move from hotter types to cooler types, as shown in the set of photographic spectra 
on page 1 of the lab. You should also notice that the shape and slope of the background spectrum upon 
which the absorption lines are superimposed (i.e., the continuum) also varies systematically with spectral 
type and, thus, stellar temperature. This is a consequence of the blackbody radiation laws, specifically 
Wein’s Law, and will be discussed in a later lab. 

Figure 3: The spectrum of HD 124320 



   
 

F-5 
 

 
Step 5.  Now let’s use the comparison spectra to classify HD 124320. Minimize the Atlas (if you want to 
restore it, you can always double click on its icon) and look at the panels in the classification tool. You will 
see that two of the comparison star spectra have already been placed in the two panels above and below the 
spectrum of your unknown star. You should see the spectrum of an O5 star is in the top panel, and the 
spectrum of the next star in the atlas, a B0, in the bottom panel. 
 
If neither of these looks quite like a match to your unknown star, you can move through the Atlas by clicking 
on the button labeled Down to the upper right of the spectrum display. Continue this until you get a pretty 
good match. You should find that the best match is with spectral types that have very strong hydrogen lines 
(more about how to identify these will come later), and not many other features. The stars with the strongest 
hydrogen lines are around spectral type A0. 
 
Because not all spectral types are represented in the Atlas, and because you want to get the classification 
precise to the nearest 1/10 of a spectral type (i.e., G2, not just G), you may have to do some interpolation.  
Look at the relative strengths of the absorption lines to do this. For your unknown star, for instance, you 
should note that the strong lines at 3970, 4101, and 4340 Å are similar in strength to both the A1 V and A5 
V standard star spectra, but that the feature at 3934 Å is intermediate in strength between those two.  Thus, 
the spectral type of HD 124320 likely lies between those of the two standard stars and is probably A2, A3, 
or A4. If you think the strength of the 3934 Å line is exactly in the middle, choose A3, if you think it is 
closer to one standard or the other, then choose A2 or A4. 
 
Step 6.  If you want to do this in a more quantitative fashion, click on the button labeled Difference to the 
right of the spectrum display. The bottom panel graph will change, showing the digital difference between 
the intensity of the comparison spectrum at the top and the unknown spectrum in the center, with zero 
difference being a straight horizontal line running across the middle of the lower panel. 
 
Look at the dips and valleys on this bottom panel and think about them for a minute. If an absorption line 
in the comparison star is shallower than the line at the same wavelength in the unknown star, then the 
intensity at those wavelengths in the comparison star will be greater than those in the unknown. So the 
difference between the two intensities will be greater than zero, and difference display will show an upward 

Figure 4: The Main Sequence spectral atlas 
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bump. If the top panel is showing an A1 spectrum, for instance, and middle panel HD 124320, you should 
see a small bump at 3933 Å, indicating that the absorption line in the unknown is deeper than that in the A1 
standard. 
 
By the same reasoning, if an absorption line in the comparison spectrum is deeper than one in the unknown 
star, then the difference display will show a downward dip.  Click on the Standards Down button to display 
an A5 comparison spectrum.  Note that the 3933 Å difference display now shows a dip, indicating that the 
absorption line in the unknown is shallower than that of an A5 standard.  So it is somewhere in between an 
A1 and an A5 in classification. 
 
To use the difference display, page through the comparison spectra (using the Up and Down buttons) until 
the difference between the comparison and unknown star is as close to zero at all wavelengths as possible.  
To estimate intermediate spectral types, watch to see when the display changes from bumps for some lines, 
to dips.  Since some lines get stronger with temperature, and others get weaker, you will see some lines go 
from bumps to dips, and some from dips to bumps, as you change the comparison spectra.  Try to estimate 
whether the amount of change places the unknown halfway between those two comparison types, or if it 
seems closer in strength to one of the two comparison types that it lies between. 
 
Step 7.  Record your choice for HD 124320 and your reasons in the data table provided below. Indicate 
which absorption lines lead you to your answer.  For example: “The strength of the lines at 3970, 4102, 
and 4340 Å are almost exactly those of type A1 or A5, and the strength of the 3934 Å line appears to lie 
midway between them.” 
 
Step 8.  You have used one or more spectral lines for making a refined classification.  But what elements 
produced them? For reference, you will want to identify the source of the line you are looking at.  Select 
File, Spectral Line Table. You will see a window containing a list of spectral lines, as in Figure 5 below.  
Drag this window to the side so that it doesn’t obscure the Classification Tool window. Now, using the 
mouse, point the cursor at the center of any line in the spectrum (say the one at 4102 Å) and double-click 
the left mouse button. A vertical red line should appear on the screen and, if you've centered correctly, a 
double-dashed line on the line list to show you what the spectral line is. For instance, the line at 4102 Å is 
a line from neutral hydrogen (H I). See Figure 5. Verify this identification with your own Classification 
Tool. 
 

Question 1:  What elements are responsible for the strong lines at 3934, 3970, 4102, and 4340 
Å seen on the spectrum of HD124320?  What are their precise wavelengths? 
 

Step 9.  You have now classified one spectrum. Call up the next unknown spectrum by selecting File, 
Unknown Spectrum, Next on List. You do not have to reload the spectral atlas. Use the methods you have 
practiced above to classify the remaining 19 stars on the list. Use the data table to record your results and 
your reasons. Be sure to identify the specific absorption lines which lead you to your classification. 
 
 
 

NOTE: See the Classification Hints on page D-8! 
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Part III – LUMINOSITY CLASSIFICATION 

 
Now that you have become skilled at stellar temperature classification, let’s take a brief look at luminosity 
classification.   
 
Step 1.  Bring up the spectrum of the practice star HD 24189. Also, click File, Atlas of Standard Spectra 
and choose Luminosity at F5. This will load a set of standard stars that all have temperature types of F5, 
but different MK System luminosity classes (i.e., roman numerals I, II, III, etc. (See the Introduction!)  
Assuming that HD 24189 is an F5 star, try to determine its luminosity class. 
 

Question 2:  What is the luminosity class for HD 24189? How certain are you? (Note: it’s 
all right to be uncertain!) What features of the spectrum distinguish the various classes? 

 
Step 2.  Repeat the above process for the first practice star HD 124320 and the Luminosity at A3 standard 
stars, assuming that A3 is the appropriate temperature type. 
 

Question 3:  What is the luminosity class for HD 124320? How certain are you? What 
features of the spectrum distinguish the various classes? 

 
Question 4:  Overall, do you think luminosity classification is easier or harder than 
temperature classification? Or does it depend on the specific spectral class being observed? 

 
 
  

Figure 5:  Spectral line identification 
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Some Classification Hints 
 
• One quick way to go through the spectral atlas, rather than using the Up and Down buttons is to open 

up the Atlas window and double click on a graph panel of the atlas representing the spectrum that you 
want to insert in the upper comparison panel of the Classification window. The atlas panel selected will 
be tinted blue to indicate that it is the one selected. You can then minimize the atlas again to see the 
Classification window more clearly. 

 
• You can get close-up views of the spectra by clicking on the Zoom In button to the right of the 

Classification window. In zoom mode, the right and left arrows under the Zoom buttons can be used to 
pan along the spectrum to see wavelengths that are off the edges of the range of view. The Reset button 
returns to full view of the spectrum. 

 
• When the Spectral Line List is visible, you can find a particular spectral line on a spectrum by pointing 

the cursor at an entry on the list and double clicking the left mouse button. A vertical red line will appear 
on the spectrum display at the wavelength of the line. 

 
• When the Spectral Line List is visible, pointing the cursor at an entry and double-clicking the right 

mouse button will bring up a window with further information on the spectral line in question. In many 
cases several ions produce spectral lines at about the same wavelength, so it will not be immediately 
clear what ion is producing a particular absorption line. For instance, both Ca II and H I produce lines 
at a wavelength of about 3970 Å. But H I lines are strongest in A type stars, while Ca II lines are 
strongest in the G and K type stars. The notes provided in the spectral line information screens can thus 
be used to decide what ions are producing what absorption lines if you have a rough idea of the spectral 
type you are looking at. 
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Data Table: Spectral Classification 

Star Sp. Type Reasons 

HD 124320 A3 
H I 3970, 4102, and 4340 Å lines similar in strength to A1 and A5 

types. Ca II 3934 Å line strength midway between those of A1 and A5 
types. 

HD 37767   

HD 35619   

HD 23733   

O1015   

HD 24189   

HD 107399   

HD 240344   

HD 17647   

BD +63 137   

HD 66171   

HZ 948   

HD 35215   

Feige 40   

Feige 41   

HD 6111   

HD 23863   

HD 221741   

HD 242936   

HD 5351   
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Lab G 
Effects of the Atmosphere on Astronomical Observations 

(Adapted from “The Hands-On Universe”, Volume I) 
 

 
 
PURPOSE: 

 
 To learn how the Earth's atmosphere affects our ability to measure the brightness of astronomical objects. 
 
EQUIPMENT: 
 
 TS-24 Telescope Simulator program and calculator or Excel spreadsheet. 
 
 

How the Earth’s Atmosphere Affects Star Brightness 
 
One of the most fundamental measurements that astronomers make is to determine the brightness of stars.  
This process is called photometry.  The brightness of a star as seen from Earth is related to the star’s intrinsic 
energy output (its luminosity) and its distance from us – both of which are important things that we want to 
know.  Measuring brightness is one of the first steps towards determining the intrinsic properties of stars 
(or other astronomical objects).   
 
Unfortunately, most astronomical observations are done from the Earth’s surface, which means that a stars’ 
light must pass through a blanket of air before reaching our eyes or a telescope.  As a result, a star looks 
fainter and less steady than if it were observed from above the atmosphere. This effect is illustrated in 
Figure 1. Astronomers describe this phenomenon as the combination of two effects: extinction refers to 
the overall reduction in the mean brightness of a star (as compared to the no-atmosphere case) and 
scintillation refers to the variation of the instantaneous brightness of the star about its mean value.  
Scintillation is commonly referred to as the twinkling of the stars. Note that the example in Figure 1 shows 
the star to be an intrinsically steady light source. In reality, many stars are variable in their light output – 
but we’re not going to consider that complication here!  
 
In general, extinction and scintillation arise because photons of light can be scattered (i.e., bounced) off 
molecules in the atmosphere. Turbulent masses of air, called cells, continually move across the light path 
between an observer and a star. When a dense cell moves in front of the star, the light will scatter more and 
the star will dim, much like car lights in fog. When a less dense cell moves in front of the star, there will be 
less scattering and the star will appear to brighten briefly. There is always some scattering. The variability 
in the amount, which has a timescale of much less than a second, is what causes scintillation. 
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The general rule-of-thumb for astronomical photometry is that the more air you have to look through, the 
worse will be the effects of extinction and scintillation. We characterize the “amount” of atmosphere we 
look through with the quantity airmass, which is related to the length of the path through the atmosphere 
that a photon of light must travel to reach our eye or telescope. This is illustrated in Figure 2. It is clear that 
airmass is much larger for objects close to the horizon than for those high overhead, near the zenith. That’s 
why the Sun looks dimmer at sunrise or sunset than at noon: the airmass is much larger and, as a result, the 
dimming effects of extinction are greater. The formula for computing airmass is given by: 
 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1

𝑐𝑐𝑐𝑐𝑎𝑎(90 − ℎ) (1) 

 
where h is the altitude of the object, i.e., its angle above the horizon, measured in degrees (°). 
 
The airmass is a minimum for a target seen directly overhead (at the zenith; altitude = 90°) and increases 
rapidly for objects close to the horizon.  Note that the formula above is an approximation; it yields an 
infinite airmass for an object on the horizon because it assumes a flat atmosphere.  Since the Earth is 
curved and finite in size, true airmasses never get that large. In general, because of the increasing severity 
of extinction and scintillation, an astronomer would be reluctant to perform photometry on an object with 
an airmass larger than 2. 
 
 
 
 
 
 
 
 
 
 

Figure 1:  The effects of the atmosphere on starlight. 
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Fill in the following table, computing the airmasses for the altitudes listed: 
 

altitude airmass 
90°  
75°  
60°  
45°  
30°  
15°  
1°  

 
NOTE:  if you are using Excel to calculate the airmasses, you must convert the angles into units of radians.  
For instance, if the angle θ is given in degrees, then the cosine of that angle is expressed in Excel as 
COS(RADIANS(θ)). 
 

Question 1:  Some measurement uncertainties are called “random” errors, because they cause 
random variations around some mean value.  Other uncertainties are called “systematic” errors 
because they always bias a measurement in a specific direction.  From the discussion above, 
does extinction produce systematic errors or random errors?  Explain your answer.  Does 
scintillation produce systematic errors or random errors?  Explain your answer. 

 
  

Figure 2:  A star’s “airmass” depends on its angle above the horizon. 
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Lab Procedure 
 
The goal of astronomical photometry is to make the best possible measurement of a star’s mean 
brightness and then correct that value for the effect of extinction. In this lab we will use a simulated 
photoelectric photometer to make such measurements and explore the effects of scintillation and 
atmospheric extinction on the apparent brightness of a star. A photometer is a device that is mounted to the 
telescope and precisely measures the brightness of stars. At the heart of high precision photometers there is 
a photomultiplier tube, or PMT. The PMT is a highly sensitive device that is able to count the total number 
of individual photons from a distant astronomical source that enter the photometer during a specified time 
interval. The brightness of an object is measured as the Count Rate, i.e., the number of photons received 
per second.  
 

A.  EXPLORING ATMOSPHERIC SCINTILLATION 
 
Step 1:  Set up the observatory 
 
Start the TS-24 Telescope Simulator program in the “MSE Astrolab” folder.  Click on OBS and choose the 
Villanova Observatory.  Click on TIME, choose Local Time (LST), then select 3:00 am in the morning of 
February 1, 1999.  Click on OK when you are sure that the date and time are correct.  Next, we need to 
choose a telescope to view through.  Click on TEL and choose the 5" Finder telescope.  This telescope 
will make it easier to identify our target star; then we will switch to the larger telescope with the photometer 
attached to make our measurements 
 
When all this is done, you should see in the center of your screen the view through the telescope.  In the 
upper left corner are the clocks.  One displays Local Time (it should read close to 03:00:00), and another 
displays Universal Time (UTC), which is the current time in Greenwich, England at a longitude of 0°.  On 
the right side of the screen are the positioning controls and the coordinates towards which the telescope is 
currently pointed. 
 
Click on the button that changes the Slewing Rate to 1 arc degree-increments.  This will allow the telescope 
to move quickly from place to place on the sky 
 
Below the view are the eyepieces that can be used with the Finder telescope.  They are classified by their 
focal lengths 40mm, 30mm, 20mm, and 10mm.  Click on a few of them to see how it affects the field of 
view through the instrument. You should recall from an earlier lab that the magnification seen through a 
telescope depends on the focal length of the eyepiece. Clicking on the "+" brings up a cross hair to help in 
fine tuning the position of the telescope. 
 
Step 2:  Point to our first target star, pi1 Boötis 
 
Next, we need to point the telescope to our scintillation target star.  The position of the star on the sky has 
been stored in the Observatory’s memory.  To retrieve it, click on DT-7 to activate the Digital Tracking 
control.  Click on the group STARS and then on the star pi1 Boötis. The coordinates displayed for this star 
should be: 

 
RA = 14h 41m 57s   Dec = 16° 24' 11" N 

 
where RA refers to “Right Ascension” and is a measure of the star’s longitude on the sky, and Dec refers 
to “Declination”, the star’s latitude. If the coordinates don’t match, call your instructor! If they do, then 
click Move To and the telescope will begin to move toward the desired coordinates. Alternatively, the 
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telescope can be moved manually using the “+” and “–” buttons below the coordinate windows. 
 
Step 3:  Fine-tune the pointing 
 
Make sure that the 40mm eyepiece is installed, which gives the smallest magnification and the widest field 
of view.  When the telescope finishes slewing, there should be a star near the center of the eyepiece, near 
the center of the cross hair.  If not, check that the telescope is indeed pointing to the correct sky location.  
Change to the 10mm eyepiece.  You may need to slightly adjust, i.e., fine-tune, the pointing of the telescope 
to bring the star to the exact center the field of view.  To do this, first change the slewing rate to arc-seconds.  
If you lose the star altogether, simply repeat Step 2. 
 
Step 4:  Set up the photometer 
 
Now that we’ve got the target star where we want it, we’ll switch to the 15” telescope and its attached 
photometer.  Switch telescopes by clicking on TEL and choosing the 15" Photometric telescope.  You 
now see the view of the sky through the photometer itself.  The field of view is much smaller than with the 
Finder telescope, and instead of a cross hair you see a circle which represents the diaphragm of the system, 
i.e., the hole through which light passes onto the PMT.  All of the light that passes through this diaphragm 
will be measured by the photometer.  Click on the button that changes the diaphragm size to 28'. Other, 
larger-sized diaphragms are available, and would be useful for examining larger objects like galaxies or gas 
clouds.  For observing stars, however, we want a small diaphragm to minimize the possibility of 
contamination of our measurements by light from nearby stars. Adjust the position of the telescope so that 
pi1 Boötis is centered in the chosen diaphragm. 
 
Choose the visual filter by clicking V in the filter panel. This restricts our measurements to the wavelengths 
of light near the middle of the range visible to our eyes. 
 
At this point, the screen should like this: 
 
 

 
If you don’t see a star centered in the diaphragm, call your instructor! 
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Step 5:  First set of measurements 
 
Set the integration time to 0.01 sec. This is the length of time that the photometer will count photons of 
light coming from pi1 Boötis. Reset the TIME to 3:00 am. (We want all of our measurements made at the 
same time so that the effects of extinction are the same.) Then measure the brightness of the star centered 
in the diaphragm by clicking once on the Count button. Numbers will appear in the Photometer Log box 
that list the Universal Time of the observation, Filter, Integration Time, Diaphragm Size, and Photon Count, 
in that order. Enter the Universal Time (UTC) and Photon Count in the first line of Table 1. The critical 
number here is the Photon Count, which is the number of photons that reached the photometer during the 
integration time. Make 9 additional measurements.  For each measurement, reset the time to 3:00 am before 
performing the count so that all measurements are made thru the same airmass. 
 
Step 6:  Second set of measurements 
 
Repeat step 5 above, this time with an integration time of 1.0 sec.  Record the data in Table 2. 
 
Step 7:  Third set of measurements 
 
Repeat step 5 above, this time with an integration time of 10.0 sec.  Record the data in Table 3. 
 
Step 8:  Data analysis 
 
For each of the 30 measurements just made, compute the photon Count Rate by dividing the Photon Counts 
by the integration time. Enter the result in the 4th column of Tables 1, 2, and 3.   
 
Now compute the average Count Rate for each of the data sets.  Record it on the bottom line of Tables 1, 
2, and 3, and also in Table 4.  If you are using Excel, use the AVERAGE function to make this computation. 
  
Now let’s look at the “scatter” in the observations. The “standard deviation” gives a quantitative description 
of the variability in the Count Rates.  The larger the standard deviation, the larger the variability and the 
more uncertain your average value.  If you are using Excel, just use the STDEV function to compute the 
standard deviation for each set of measurements, and enter the results in Tables 1, 2, and 3, and also in 
Table 4.   
 
If you are not using Excel, you will have to compute the standard deviation “by hand” using the following 
formula: 
 
 𝑆𝑆𝑆𝑆𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑆𝑆𝑎𝑎𝑐𝑐𝑆𝑆 =  �average[(𝑥𝑥1 − �̅�𝑥)2, (𝑥𝑥2 − �̅�𝑥)2, (𝑥𝑥3 − �̅�𝑥)2, … ] (2) 

 
where the xi are the individual count-rate measurements and �̅�𝑥 is the average count-rate. 
 

Question 2: You should notice that the average Count Rates recorded in Table 4 for the 0.01 sec, 
1.0 sec, and 10.0 sec integrations are all very similar.  Why do you expect this to be the case?   
Describe the change in the standard deviation with integration time.  For which integration time 
are the individual measurements most precise (i.e., show the least scatter).  Considering the 
picture in Figure 1, explain why you expect this to be so.  If you could only make one measurement, 
which exposure time would you choose?  Why? 
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As you have realized by now, the average Count Rates are simply a description of how bright a star appears 
to be. Astronomers use a more complicated system to describe the brightness of a star, called the “visual 
magnitude” system. Compute the visual magnitude corresponding to each of the average Count Rate values 
in Table 4 using the formula: 
 
 Visual Magnitude =  −2.5 × 𝑙𝑙𝑐𝑐𝑙𝑙10(Count Rate) + 18.0 (3) 

  
and record them in the last column of the table. This formula uses the base 10 logarithm, which is 
expressed as LOG10 in Excel.  Remember that magnitudes are never expressed in scientific notation. 
 
 

B. EXPLORING ATMOSPHERIC EXTINCTION 
 
Step 1: Set up the observatory and point to the target star 
 
EXIT then restart the TS-24 program.   This will reset all the counters in the program and assure the most 
accurate answers.  Choose the Villanova Observatory and set the local time to midnight on the night of 
February 2, 1999 – the day after the previous measurements were made.  Use the 5" Finder telescope (TEL) 
and the DT-7 to point the telescope at the bright star called Arcturus in the STARS Group.  When the 
telescope finishes slewing make sure the telescope is pointed near Arcturus: 
 

RA = 14h 13m 57s   Dec = 19° 10' 15" N 
 

Step 2: Set up the photometer 
 
Switch to the 15" Photometric telescope (TEL) and fine-tune the position of the telescope so that the star 
is centered in the photometer’s diaphragm. Make sure the 28' diaphragm is chosen.  Also, select the visual 
filter by clicking V in the filter panel and set the integration time to 1 sec.    
 
Step 3: Make measurements 
 
 We will now observe Arcturus over a several hour period during the night to see how atmospheric 
extinction affects the light we receive. You will see that at midnight on February 2, 1999, Arcturus was 
close to the eastern horizon, as seen from Villanova. As the hours went by, Arcturus traveled higher in the 
sky, moving from east to west. This is due to the rotation of the Earth. Arcturus appeared close to the zenith 
(almost directly overhead) just before the Sun came up in the morning. 
 
Using Count, measure the brightness of Arcturus at a local time of 0:00:00 (i.e. midnight). Record the 
Photon Count, and the star’s altitude (angle above the horizon) in the appropriate row of Table 5. Round 
off the altitude to the nearest degree. Now make 9 more measurements, successively increasing the local 
time by ½-hour for each measurement. What you are doing is monitoring the brightness of Arcturus as it 
climbs higher and higher into the night sky. 
 
When all of your observations are finished, you can close the Observatory by clicking EXIT 
 
Step 4: Data analysis 
 
Compute the airmass and visual magnitude for each of your Arcturus observations and enter the results in 
Table 5. 
 
Using Excel, plot visual magnitude (Y-axis) vs. airmass (X-axis). The airmass axis should extend from 0 
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(at left) to about 4.  The magnitude scale should extend from about 3 (at bottom) to about 0 (at the top).  
Note that, in the magnitude system, smaller values mean brighter. You should notice that the observed 
brightness of Arcturus drops off systematically as airmass increases and, thus, how strong the effects of 
extinction are! Stars are much brighter when seen high in the sky than when seen near the horizon. Your 
measurements (should!) show that Arcturus was almost 3 times brighter at 4:30 AM than it was at midnight. 
 
As noted earlier, one of the goals of photometry is to CORRECT for the effects of extinction, not just notice 
that they are present. I.e., even though our observations were made from Earth’s surface, we want to 
estimate the brightness a star would have if it were observed from above the atmosphere. This means 
extrapolating our measurements back to a value at airmass = 0.  On your graph, you should see a simple 
linear relationship between airmass and visual magnitude.  Use a ruler and extrapolate the visual magnitude 
back to an airmass of zero.  Draw the line of extrapolation on your plot. This is your estimate of the visual 
magnitude of Arcturus as seen from above the atmosphere. If you are using Excel, use the Trendline feature 
of Excel to fit a linear relation to the magnitudes. Make sure to show the equation of the trendline on the 
graph. Use the resultant Trendline formula to compute the magnitude at airmass = 0 (this will be the 
intercept in your linear Trendline formula). This is the value you would measure if there were no atmosphere. 
 

Question 3:  What is the corrected visual magnitude for Arcturus?  (I.e., the value that you would 
estimate for Arcturus if it could be observed from above the atmosphere, i.e., at airmass = 0).  
How close is this to the accepted value for Arcturus?  (Go into your favorite web search engine 
and type something like “visual magnitude of Arcturus” to find out what the accepted value is.)  
Indicate what website you used for your results.  You should be within about 0.5 mag of the true 
value.   

 
 

C. THE EFFECT OF SKY BRIGHTNESS 
 
One final effect must be considered when trying to achieve the highest accuracy in stellar photometry – that 
of light added by the atmosphere. We have all noticed that some places have darker nights than others and, 
as a result, many more faint stars can be seen. This is often the result of “light pollution” in which light 
from terrestrial sources (such as a nearby city) is bounced around by atmospheric molecules and results in 
a bright background against which we are trying to see/measure faint astronomical sources. This is one of 
the reasons that modern observatories are located far from densely populated areas.    
 
You have seen that the 28 mm diaphragm you used with the photometer is significantly larger than the 
apparent diameters of the stars being observed, thus your measurements of the brightness of pi1 Boötis and 
Arcturus were actually measurements of “star + sky.”  In practice, astronomers try to use the smallest 
possible diaphragm size, but it is impossible to totally exclude light from the sky in photometric 
measurements. 
 

Question 4:  Given that the diaphragm size will always be bigger than the stellar image and 
that there are no places where the sky is totally dark, your measurements will always be 
contaminated. Suggest a way in which the sky brightness could have been measured and 
removed from your observations of pi1 Boötis and Arcturus.  (Note: Don’t say “make your 
observations from above the atmosphere.” 
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Table 1:  Counts for 0.01 sec Integration Time 

Measurement UTC Photon Count Count Rate 
(photons/sec) 

1    

2    

3    

4    

5    

6    

7    

8    

9    

10    

Average    

Standard Deviation    
 
 

Table 2:  Counts for 1.0 sec Integration Time 

Measurement UTC Photon Count Count Rate 
(photons/sec) 

1    

2    

3    

4    

5    

6    

7    

8    

9    

10    

Average     

Standard Deviation    
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Table 3:  Counts for 10.0 sec Integration Time 

Measurement UTC Photon Count Count Rate 
(photons/sec) 

1    

2    

3    

4    

5    

6    

7    

8    

9    

10    

Average     

Standard Deviation    
 
 

Table 4: Scintillation Summary Table 

Integration Time 
(sec) 

Average Count Rate 
(counts/sec) Standard Deviation Visual Magnitude 

0.01    

1.0    

10.0    
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Table 5: Results for Extinction Exploration 

Local Time Altitude 
(°) Photon Count Airmass Visual 

Magnitude 
0:00 AM     

0:30 AM     

1:00 AM     

1:30 AM     

2:00 AM     

2:30 AM     

3:00 AM     

3:30 AM     

4:00 AM     

4:30 AM     
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Lab H 
Taking a Star's Temperature 

(Adapted from The Hands-On Universe, Volume I) 
 

 
 
PURPOSE: 
 
Verify that the surface temperature of a star can be estimated by measuring its brightness through a set of 
differently colored filters. 
 
EQUIPMENT: 
 
TS-24 Telescope Simulator program and calculator or Excel spreadsheet 
 
 
 
 

 
 
  

Figure 1: The energy distributions of hot objects 
(Picture credit: www.exo.net ) 
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Introduction:  Magnitudes, Colors & Temperature 
 
In an earlier lab you learned that the pattern of absorption lines seen in the spectra of stars depends strongly 
on the temperature of their outer surface layers. Because of our understanding of the formation of spectral 
lines, we are able to analyze stellar spectra and determine a star’s surface temperature. This knowledge is 
what led to the ordering of spectral types in the OBAFGKM classification system. The acquisition of a high-
quality stellar spectrum and the detailed analysis of its properties can be a time consuming and resource-
intensive process – particularly if we wish to determine the properties of many stars. Fortunately, there are 
other techniques available which allow astronomers to estimate stellar temperatures using more easily 
obtained and analyzed data. In this lab, you will examine one such technique, which utilizes stellar 
photometry, i.e., the measurement of the brightness of stars in specific wavelength intervals. 
 
A hot dense object emits light at all wavelengths. In the late 1800's, the German physicist Max Planck 
discovered that the amount of energy radiated at wavelength λ by such an object depends only upon its 
temperature. He formulated a mathematical relationship which describes the brightness (or intensity) at a 
given wavelength as a function of temperature. This relationship is now known as Planck’s Law. Several 
examples of Planck curves are shown in Figure 1 on the first page of the Lab, for temperatures in the range 
3000 – 7000 K. The key point is that the peak in the emitted radiation shifts to shorter wavelengths as the 
temperature increases. This property, known as Wien’s Law, results in a change in the shape of the emitted 
spectrum within the wavelength range to which the human eye is sensitive (indicated by the rainbow). For 
temperatures above 7000 K, the peak shifts out of the range of human vision, although a portion of the 
“tail” of the energy distribution is always visible to the eye. 
 
Stellar absorption lines are superimposed on a continuum spectrum which forms in slightly deeper, hotter 
and denser layers than the absorption lines. These layers should obey Planck’s and Wien’s Laws and thus 
the shape of the continuum spectrum should reflect the stellar temperature near the surface. 
 
The shape of a star’s continuum spectrum can be measured using “photometry.” Last week you became 
photometry experts when you investigated the effects of Earth’s atmosphere on the brightness of stars. Now 
you will put this expertise to work and measure the brightness of a sample of stars using a specially designed 
set of filters to transmit specific regions of the visible spectrum. The filters are known as the UBV filters, 
which stand for Ultraviolet, Blue, and Visual. The wavelength ranges which these filters transmit are shown 
schematically in Figure 2. The figure also shows schematic spectra of two stars of very different 
temperatures. It can be seen clearly that the ratio of the brightness of a star in any pair of filters, say, B and 
V or U and B will be dependent on temperature, at least over some temperature range.   
 

Figure 2:  Wavelength ranges of the UBV filters. 
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Lab Procedure 
 
The observations for this lab will be performed using the photoelectric photometer mounted on the 15" 
telescope at the VU Special Observatory. Why is this observatory special? Because it is located on the 
Moon! Why is it located on the Moon? Because – as you know from an earlier lab – Earth’s atmosphere 
provides severe observational challenges. If we made these observations from the Earth’s surface, we would 
have to worry about (and correct for) the effects of extinction, scintillation, and sky brightness in order to 
correctly measure the apparent brightness of the stars. This would add a significant amount of extra work 
and you would never be able to complete this lab in a reasonable time. The inconveniences of working from 
the Moon’s surface (slight shortness of breath and intense feelings of cold) seem a small price to pay for 
this benefit. 
 
You will measure the brightness of each of a set of 13 target stars using the U, B and V filters. These raw 
measurements, in units of photon counts per second, will then be converted into the standard astronomical 
magnitude system and you will examine the sensitivity of the “B–V color index” and the “U–B color index” 
to stellar temperature. The stars you will observe have been chosen to span a wide range of temperatures 
and to be located in a small region of the sky, so that all the observations can be accomplished in a single 
observing session. 
 
 

A.  THE OBSERVATIONS 
 
Step 1:  Go to the observatory 
 
Open the TS-24 Telescope Simulator in the “MSE Astrolab” folder. Select the VU Special Observatory 
(OBS, VU Special). In the Time box, select Local Date/Time and set the date to November 15, 1999 at 
midnight local time. We’ve chosen this date and time so that all the stars we wish to observe will be above 
the horizon and high in the sky for Earth-bound observers located at Villanova. 
 
Step 2:  Prepare the telescope 
 
Install the Finder scope (TEL, Finder) and click the 1 arc-degree button in the SLEWING RATES panel, 
to insure that the telescope moves at its highest possible speed to each new target star. 
 
Step 3:  Observe your first star 
 
Now perform UBV photometry on the first of your 13 target stars. The list of targets can be found using the 
DT-7 telescope control program (DT-7). A list of 15 stars will appear. You’ve already observed the first 
two stars on the list (pi1 Bootis and Arcturus) when you studied the effects of the atmosphere on stellar 
photometry. Today’s observations begin with the third star on the list, upsilon Ori, and end with the last 
star, alpha Ori.   To move the telescope to the first star, simply click on the name upsilon Ori and then click 
the Move To button. 
 
When the telescope arrives at upsilon Ori, install the photometer (TEL, Photomultiplier).  Set the 
photometer parameters as follows: 
     Integ Time:  1 sec 
     Diaphragm: 28 arc-seconds 
 
Center the star in the 28 arc-second diaphragm, making sure – if necessary – to exclude any nearby stars.  
Then measure the brightness of upsilon Ori using the U, B and V filters by clicking on the appropriate filter 
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and then pressing Count. Record the U, B and V count-rates in Table 1 or in an Excel spreadsheet supplied 
by your instructor. Note that, since the integration time is set to 1 second, the total number of photons 
counted by the photometer (last entry in each line of the Photometer Log) is the same as the count-rate in 
units of counts/second. 
 
Step 4:  Observe the rest of the sample 
 
Repeat Step 3 for each of the remaining 12 stars in the DT-7 target list and record the count-rates in Table 
1. 
 

Question 1:  The use of the VU Special Observatory just saved you a lot of time in acquiring 
good measurements of the brightness of your target stars. What is special about the VU Special 
Observatory? What benefits does it offer? What extra steps would you have had to take if you 
had been observing from a typical site on the Earth’s surface? 

 
 

B.  THE DATA ANALYSIS 
 
Take a look at Table 2.  The second and third columns contain basic data for your 13 target stars. The 
spectral types were determined by astronomers studying the optical spectra of the stars, much as you did in 
an earlier lab. The temperatures, which refer to the outer layers of the various stars, were determined by 
analyzing the strengths of the various absorption lines present in the spectra. In this section we will 
determine whether the overall shapes of the optical spectra are also dependent on temperature, as might be 
expected from Wien’s Law. 
 
Step 1:   Compute magnitudes and colors 
 
Compute the V magnitude, (B–V) color index, and (U–B) color index for each star in Table 1 and place 
the results in the appropriate boxes in Table 2 (or in your Excel spreadsheet).  Use the following formulae 
to convert your count-rates to magnitudes and color indices: 
 
 𝐕𝐕 =  −2.5 × log10 (V count- rate) + 18.0 (1) 

 
 (B–V) =  −2.5 × log10 �

B count- rate
V count- rate�

+ 0.17 (2) 

 
 (U–B) =  −2.5 × log10 �

U count- rate
B count- rate�

− 0.93 (3) 

 
The constants on the right hand side of these formulae are needed to transform your count-rate 
measurements into the standard system of colors and magnitudes used by astronomers. In your table, present 
your results to only 3 decimal places (although the count-rates are determined to a higher precision). 
 
The V magnitude characterizes the brightness of a star in the night shy and depends on both the intrinsic 
luminosity of a star (i.e., how much energy it puts out) and its distance from us. From a good dark site, the 
unaided human eye can see stars as faint as about sixth magnitude (i.e., V ~ 6.0).  Notice that nearly all of 
your target stars should be easily visible in the night sky. Remembering that, the fainter the star, the larger 
the V magnitude.)  
 

Question 2:  How many of your target stars would not be easily visible to the unaided human 
eye?  Which ones? 
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The (B–V) and (U–B) color indices are related to the shape of star’s optical spectrum, and not to its 
brightness.  More specifically, they are related to the slope of the spectrum in the region of B and V filters 
(for the (B–V) index) and in the region of the U and B filters (for the (U–B) index).  From Figure 2 you 
should expect that the indices are sensitive to the temperature of stars since the slope of the optical spectrum 
changes from being negative for the hottest stars (i.e., brighter at U than at V) to being positive for the 
coolest stars (i.e., brighter at V than at U). 
 
Step 2:  Investigate the temperature-dependence of the color indices. 
 
Now we’ll examine the sensitivity of the shape of the optical spectrum to stellar temperature. To do this, 
we will use the (B–V) and (U–B) color indices.  Make a plot of the stellar temperature (x-axis, from column 
3 of Table 2) versus your measurement of (B–V) (y-axis).  Make a second plot of the temperature versus 
your measurement of (U–B). 
 

Question 3:  Do your data show that the (B–V) color index and/or the (U–B) color index is 
sensitive to the stellar temperature?  I.e., do you see a distinct relationship between the two 
quantities?  Does this relationship make sense given Wien’s Law? Refer back to Figure 2 to 
remind yourself how Wien’s Law affects UBV photometry.  Also, take a look at Table 1 to see 
which regions or the spectrum are brightest for each star. 

 
Question 4:  For which stars is (B–V) most sensitive to temperature?  The hotter ones or the 
cooler ones? I.e., for which stars does a small change in temperature – say a few thousand 
degrees – make the largest change in the observed (B–V)? Your observations do not include 
any O-type stars, which have temperatures that could range up to as high as 50,000 K. Given 
the data on your plot, what do you think the approximate (B–V) color index of an O star might 
be?  Do you think that (B–V) would be a good diagnostic of the temperature of an O star? 
What about (U–B)? 

 
Question 5: Why do you think (B–V) and (U–B) are referred to as “colors” by astronomers?  
What do they have to do with the color of a star in the night-time sky? Neglecting atmospheric 
effects, do you think the color you see tells you anything about a star? 

 
Step 3:  Compute and test the “color temperatures” 
 
There is a standard relationship that has been used for many years by astronomers to compute the “color 
temperature” of a star, based on its (B–V) color index. This relationship is given by: 
 
 color temperature (˚K) =  

7200 
(B–V) + 0.64

   (4) 

 
and produces a temperature in units of Kelvin degrees (˚K).  
 
You will now test this relationship by comparing the color temperature for each of your stars with the 
spectroscopically determined temperatures. 
 
Compute the color temperatures for all of your stars according to Equation 4 and enter them in the last 
column of Table 2. Now make a plot of the actual stellar temperature (x-axis, from column 3 of Table 2) 
versus the color temperatures you just computed (y-axis). 
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Question 6:  Does the “color temperature” from Equation 4 accurately reflect the actual 
stellar temperature as determined from the spectral lines?  If so, then the points you just plotted 
should all lie along a line with a slope of 1 and an intercept at 0.  To check this, draw such a 
line on your plot.  (If you used Excel to make your plot, print it now – in portrait mode – and 
adds this line by hand using a ruler.) Over what stellar temperature range would you feel safe 
in using the color temperature to estimate the actual stellar temperature? What range of 
spectral types does this correspond to? 
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Table 2: Magnitudes, Colors, & Temperatures 

Star Spectral 
Type 

Temperature 
(˚K) V (B-V) (U-B) 

Color 
Temperature 

(˚K) 
upsilon Ori B0 V 31,500         
lambda Lep B0.5 IV 26,200         
HD 31726 B1 V 22,600         

eta Aur B3 V 16,300         
tau Ori B5 III 13,200         
beta Ori B8 I 12,200         
mu Ori A2 V 9,100         
iota Tau A7 V 8,300         

gamma Lep F6 V 6,300         
lambda Aur G2 IV 5,860         

tau Aur G8 III 4,900         
rho Ori K0 III 4,500         

alpha Ori M2 I 3,600         
 

Table 1: Observational Data 

Star U count-rate  
(cts/sec) 

B count-rate  
(cts/sec) 

V count-rate   
(cts/sec) 

upsilon Ori    

lambda Lep    

HD 31726    

eta Aur    

tau Ori    

beta Ori    

mu Ori    

iota Tau    

gamma Lep    

lambda Aur    

tau Aur    

rho Ori    

alpha Ori    
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Lab I 
Trigonometric Parallax 

 
 

 
PURPOSE: 
 
To use simulated observations of the heliocentric parallax of stars to understand the most fundamental 
method of measuring distances outside the solar system. 
 
EQUIPMENT: 
 
Surveyor’s theodolites, computer, scientific calculator, and Villanova's Super 'Nova computer program 
 
 
 
 

Figure 1: The Cosmic Distance Ladder 
(Picture credit: Bennett et al. “The Essential Cosmic Perspective”) 
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Introduction 
 

(NOTE: your instructor may ask you to answer Introductory Questions 
1 thru 5 as a pre-lab exercise) 

 
One of the most important measurements that astronomers make is of the distances to astronomical objects. 
For example, distances are required for determining many of the fundamental properties of stars and 
galaxies, such as their luminosities, as well as for determining the size scale of the Universe. For objects on 
Earth and in the Solar System, it is now possible to use the technique of “radar ranging” to accurately 
determine distances. In this technique, a beam of radio waves is bounced off a distant object. The time delay 
between when the beam is sent out and when the reflected beam returns, combined with our knowledge of 
the speed of light, allows the distance of the object to be computed. The precision of this technique is limited 
only by our ability to measure the time delays. Beyond the Solar System, however, radar ranging is 
impossible and astronomers have devised a number of methods that allow distances to ever more distant 
objects to be estimated. Some of these methods are illustrated in the Figure 1 on page 1 of the lab. The set 
of techniques that now allow us to determine distances out to the faintest observable galaxies is known 
collectively as “The Cosmic Distance Ladder.” In general, the techniques for studying the most distant 
objects depend on calibrations determined by studying closer objects. In fact, the accuracy of the entire 
Cosmic Distance Ladder ultimately depends on how well we can measure the distance to the relatively 
nearby stars. 
 
In this lab you will investigate the technique of “Trigonometric Parallax” which astronomers use to measure 
the distances to the nearest stars. You will see that this is a “fundamental” technique in that it relies on no 
theoretical assumptions nor on any a priori understanding of the properties of stars. You will also see how 
this technique is similar to a method used by Earth-bound surveyors to measure distance to faraway objects. 
 
THE SURVEYORS METHOD: 
 
Even on Earth, distance measurements are not always simple. Particularly in the days before radar ranging 
was possible, techniques had to be devised to measure distances to remote or inaccessible objects and 
locations. One such technique, the “Surveyor’s Method,” is illustrated in Figure 2. The goal is to measure 
the distance to the tree on the far side of a raging river without getting wet or, possibly, drowning. The 
technique is straightforward. The first step is to establish a baseline on the accessible side of the river, of 
known length b. The second step is to measure the two angles β1 and β2 using a precise surveyor’s 
instrument called a theodolite. Finally, after applying a little trigonometry (i.e., the Law of Sines), the 
distance to the tree to each theodolite can be calculated from the equations: 
 

 𝑑𝑑1 =  
sin 𝛽𝛽2

sin 𝛼𝛼
 × 𝑏𝑏 (1a) 

and 

 𝑑𝑑2 =  
sin 𝛽𝛽1

sin 𝛼𝛼
 × 𝑏𝑏 (1b) 

 
where α is the apex angle of the triangle in Figure 2, and corresponds to the angular size of the baseline as 
viewed from the distant tree. Since the sum of the interior angles of a triangle is 180°, we have: 
 
 𝛼𝛼 = 180° −  𝛽𝛽1 −  𝛽𝛽2 (2) 
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The physical units of the distance in Equations 1a and 1b will be the same as those in which the baseline 
is measured. The precision of this distance measurement will depend only on the precision of the 
measurements of b, β1 and β2. 
Before we discuss the astronomical applications, let’s first consider what happens to Equations 1 when the 
distance is very large (as compared to the baseline length). From studying Figure 2, you can see that, as 
the distance increases, the angles β1 and β2 approach limiting values of 90° and the apex angle α approaches 
a limiting value of zero. From our knowledge of trigonometry, we know that this also imposes limiting 
values on the sine of these angles. These limits can be summarized as follows: 
 

as d becomes large (i.e., d→∞) 
𝛽𝛽1  → 90° 

𝑎𝑎𝑎𝑎𝑑𝑑 
sin 𝛽𝛽1 → 1 

𝛽𝛽1  → 90° sin 𝛽𝛽1 → 1 
𝛼𝛼 → 0 sin 𝛼𝛼 → 𝛼𝛼 (radians) 

 
If we substitute these limiting values for the sine of the angles into either of Equations 1a or 1b, we get a 
simplified version of the distance equation which applies for large distances: 
 

 𝑑𝑑1 =  𝑑𝑑2 =  
1
𝛼𝛼

 × 𝑏𝑏 for large d (3) 

where the angle α must be expressed in radians and the distance will have the same units as the baseline. 
Thus, for large distances, the distance is inversely proportional to the size of the apex angle α and directly 
proportional the size of the baseline b. The inverse relationship between the angle α and the distance d can 
be seen clearly from considering Figure 3. 
 
Later in this lab, you will become surveyors and measure the distance to an object outside the classroom 
using two theodolites. Because the objects you measure are still relatively close, you will use the more exact 
version of the distance equation, as given in Equations 1a and 1b. 

Figure 2:  The Surveyors Method. 
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THE ASTRONOMER’S METHOD: 
 
Astronomers have devised a technique for measuring the distances to nearby stars, which is similar to that 
employed by Earthly surveyors. It is known as the Trigonometric Parallax method. Figure 4 shows the 
general arrangement, which makes these measurements possible. The Earth’s orbit around the Sun provides 
a measurement baseline whose length is well-known, i.e., 2 Astronomical Units (AU). This baseline 
subtends an angle α as observed from the nearby star whose distance we wish to determine. Due to the 
large distance of stars, measurements of α and b allow us to determine the distance to the star using Equation 
(3) and with a precision limited only by the precision of our measurements. 
 
At this point you should be thinking, “How in the world can the angle α be measured when we can’t travel 
to the star and directly measure it?” 
 
This is where the “parallax” part of Trigonometric Parallax comes in. “Parallax” is the apparent shift in 
position of a nearby object with respect to more distant objects when viewed from two different locations. 
As an example, hold up your thumb at arm’s length and look at it first with one eye, and then the other. 
Your thumb appears to shift back and forth against the background, and this apparent shift is called parallax. 
It is the result of looking at an object from two different vantage points, that is, from each eye that has a 
different position relative to your thumb. 
  

Figure 3:  The inverse relationship between the angle α and distance. 

Figure 4:  The Astronomers Method. 
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If you move your thumb closer to your face and repeat the experiment you see that the apparent shift of 
your thumb is greater. Therefore, the more distant an object is the smaller is its shift, or parallax, when 
viewed from two different positions. For nearby objects, closer than 100 feet or so, your brain measures the 
parallax by comparing the direction of an object as seen by your two eyes and automatically interprets that 
parallax as a distance. For this reason, most people find it nearly impossible to touch the tips of their index 
fingers to each other with one eye closed, but find it easy with both eyes open. 
 
As the Earth moves on its orbit around the Sun, our vantage point for viewing the stars constantly changes. 
Thus, the relative positions of the stars on the sky actually change during the course of a year, just the way 
the apparent position of your thumb against a background pattern would change if you moved your head 
back and forth. Because of the great distances of the stars, however, this change is only measurable for the 
nearest stars and is far smaller than could be sensed with the naked eye. High quality photographs of the 
stars, taken at different times of the year, are required to reveal this motion. 
 
The picture below shows how a star’s parallax is observed: 
 

Look closely at the two simulated photographs of the stars.  You will see that the position of the nearby star 
has changed relative to the pattern created by the very distant background stars. If you could observe the 
nearby star continuously over the course of a year, say from one January to the next, you would observe 
the star to move slowly from one extreme position to the other, and then back again to the original location.  
Here is the critical part: the full distance that the star moves on the sky between the January and July 
observations – which we measure in angular units by comparing the January and July photographs – is the 
same as the apex angle α in Equation (3) and as shown in Figure 4. We don’t have to travel to the star 
to measure α!  Since we already know that the baseline is equal to 2 AU, this measurement allows us to 
use Equation 3 to determine the distance to the nearby star. The beauty of this technique is that we don’t 
have to know anything about stars to measure their distances. There are no theoretical assumptions in the 
technique and the precision is limited only by our ability to observe the yearly change in a star’s position 
on the sky, i.e., its parallax.  

Figure 5:  Trigonometric Parallax. 
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In practice, astronomers use an even more simplified version of Equation (3) to determine a star’s distance.  
By convention, astronomical parallax angles, represented by the symbol p, are always taken as half the full 
apex angle (as indicated in Figure 5), and are measured in units of arc-seconds rather than radians.  
Remember that: 
 

1 full circle = 360 degrees (°) = 2π radians 
1 degree = 60 arc-minutes (') 

1 arc-minute = 60 arc-seconds (") 
 
With these two conventions, and remembering that the baseline distance is 2 AU, Equation (3) reduces to: 
 
 

𝑑𝑑 (𝐴𝐴𝐴𝐴) =  
206265

𝑝𝑝 (″)
 (4) 

 
where the parallax angle p is measured in units of arc-seconds and the distance d is returned in units of 
AU.  The factor of 206,265 arises because that is the number of arc-seconds in 1 radian. 
 
To further simplify things, astronomers have defined a distance equal to 206,265 AU (equivalent to 3.26 
light-years) to be one parsec (pc).  With this definition, Equation (4) becomes: 
 
 𝑑𝑑(𝑝𝑝𝑝𝑝) =  

1
𝑝𝑝 (″)

 (5) 

 
Equation 5 is often known as the Parallax Equation. As you might have guessed, the word parsec is a 
concatenation of the words “parallax” and “arc-seconds”. A star with a parallax angle of 1" will have a 
distance of 1 pc. Another way to look at it is that, from a distance of 1 pc, a baseline of 1 AU will subtend 
an angle of 1". 
 
 
INTRODUCTORY QUESTIONS: 
 

Question 1:     Suppose the surveyors in Figure 2 make the following measurements:  b = 
50 feet, β1 = 87°, β2 = 89°.  What are d1 and d2?  What is the average distance?  Show all 
calculations. 
 
Question 2:  What is the critical condition that would allow us to use the simplified form 
of the distance equation in Equation 3 rather than the full form in Equation 1? 
 
Question 3: What is the distance, in parsecs, of a star with a parallax shift of p = 0.75 
arc-second?  Show all calculations. 

 
Question 4: What is the distance, in light years, of a star with a parallax of p = 0.75 arc-
second?  Show all calculations. 

 
Question 5: What is the distance, in A.U., of a star with a parallax of p = 0.75 arc-
second?  Show all calculations. 
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Lab Procedure 
 
There are two parts to this lab. In Part A you will use the Surveyor’s Method and a pair of theodolites to 
determine the distance to an object outside the classroom. Your instructor will tell you which object to 
measure. In Part B, you will use simulated observations of the night sky to measure the parallax angle p 
and distance d to several nearby stars. These two parts can be done in any order. 
 
 
A. THE DISTANCES TO TERRESTRIAL OBJECTS: THE SURVEYOR’s METHOD 
 
There are two surveyor’s theodolites set up in the lab next to the window – one at the front of the lab and 
one at the back of the lab. You will use these to perform a measurement identical to that illustrated in Figure 
2 (except that there is no river). The measurements you will need to make are the baseline size b (i.e. the 
distance between the theodolites) and the two angles β1 and β2 between the baseline and the distant object. 
You will work in pairs or groups, with one student (or group) at the front theodolite and another at the rear 
theodolite. Your instructor will tell you which distant object to observe.  
 
Step 1: Establish the baseline. 
 
Before beginning, ask your instructor if the theodolites have been leveled for the experiment. If they are 
not properly adjusted, the measured angles will be incorrect. Once you are assured that the instruments are 
properly prepared for the meaurement, loosen the vertical and horizontal motion locks to allow the 
theodolite telescopes to move freely. The locks are indicated by the yellow electrical tape. Turn them 
counterclockwise to loosen the telescopes and clockwise to lock the telescopes. Point the telescopes so that 
they are looking directly at each other. Tighten the locks. After the telescopes are locked, small adjustments 
of the pointing can be made using the fine-adjustment knobs indicated by the blue electrical tape.   
 
After you are satisfied that the two telescopes are pointed directly at each other, press the green power 
button on the theodolite’s control panel to activate the display. Next press the “0SET” button on the control 
panel. This will establish the baseline as the zero-angle position of the telescope.  
 
Step 2:  Measure the horizontal deflection angle of the distant object.  
 
Once you have “zeroed” the system, loosen the motion locks (yellow tape) and move the telescope so that 
it is centered on the object whose distance you wish to measure. Center the object in the telescope’s 
crosshairs and lock the telescope. You will have to adjust the telescope’s focus to clearly see the distant 
object. Remember that you can make fine adjustments in the telescope’s pointing after it has been locked. 
Make sure that both theodolites are pointed to the same part of the object you are measuring! After 
you are satisfied that telescope is pointed properly, record the horizontal deflection angle (β1 for the front 
theodolite and β2 for the rear theodolite) in Table 1 below or on an Excel spreadsheet provided by your 
instructor. The angle is shown on the instrument’s display panel in the HR row, in units of degrees, 
arcminutes, and arc-seconds. If the display reads a negative angle, press the R/L button to toggle the 
telescope’s rotational orientation between clockwise and counterclockwise. Your final result should be in 
the general neighborhood of 80-90°. Share your result with your observing partner. You should both now 
have measurements for β1 and β2. 
 
Step 3:  Measure the baseline distance.   
 
Determine the separation between the two theodolites. Use the tape measure provided by your instructor to 
determine the distance between the two plumb bobs hanging below the theodolites. Make this measurement 
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as precisely as possible, to a fraction of an inch. Record the baseline distance b in Table 1.   
 
Your measurements are now completed. Turn off the theodolites’ control panels by pressing the green 
power button again. 
 
Step 4:  Compute the distance to the object. 
 
Use your measurements of β1, β2 and b – along with Equations 1a and 1b – to determine the distances to 
your chosen object. If you are using Excel for your calculations, remember that it requires angles to be 
expressed in radians to compute trigonometric functions. When you convert your angles to decimal degrees, 
you should keep 4 decimal places. Enter your distance result (in feet) in Table 1. 
 

Question 6: How well did you do? Your instructor will provide you with the known 
distance to the object you’ve observed. Compute the percentage error for your results.  
Remember that %-error is given by: 

 
 

% 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝐸𝐸𝑚𝑚𝑑𝑑 𝑣𝑣𝑎𝑎𝑣𝑣𝑚𝑚𝑚𝑚 − 𝑡𝑡𝐸𝐸𝑚𝑚𝑚𝑚 𝑣𝑣𝑎𝑎𝑣𝑣𝑚𝑚𝑚𝑚

𝑡𝑡𝐸𝐸𝑚𝑚𝑚𝑚 𝑣𝑣𝑎𝑎𝑣𝑣𝑚𝑚𝑚𝑚
 × 100% (6) 

 
Comment on your results. What distant object did you observe? Were your distances close to 
the true value? What were the main sources of possible uncertainty in your measurements? 

 
 
B. THE DISTANCES TO STARS: TRIGONOMETRIC PARALLAX 
 
Step 1:  Gathering data 
 
Launch the Super 'Nova program in the “MSE Astrolab” folder. Choose Labs, then Stellar Parallax to 
start the exercise.  The computer can simulate five different fields and you will select two to use in this lab. 
For each field, the computer simulates a photograph of a very small portion of the sky. You can use the 
Blink feature to switch back and forth between three photographs of the same portion of sky taken six 
months apart and arbitrarily identified as January, July, and January one year later. As you Blink between 
the photographs, the distant stars will not change but the nearby stars will appear to move back and forth 
just as your thumb appeared to move back and forth as you blinked your eyes at the very beginning of the 
lab. 
 
Blinking only two plates taken six months apart may show objects that are really moving in addition to 
stars that appear to move due to parallax. Objects that are truly in motion are planets, comets, etc. Only 
additional observations can tell you whether the object is really moving. Pluto was discovered in precisely 
this way by blinking pairs of plates. Today, new asteroids are discovered with this technique, but they move 
so rapidly that their motion is apparent on plates taken only a few days apart. Beware! In this lab, there are 
a couple of objects that are really in motion. If an object does not move back to its original position one 
year later, then it is not a star and the apparent motion is due to actual movement. 
 
To record the data, first write down the number of the field that you have chosen in Table 2 or on the Excel 
spreadsheet provided by your instructor. Then blink among the three photographs to identify the stars with 
measurable parallaxes. Now turn on the overlay Bullseye (click on Bullseye), place the Bullseye over one 
of the stars that exhibits the parallax shift by clicking on it. Make sure the Bullseye is well centered and 
measure the position of this star for the earlier January date. Record its initial position (x and y; displayed 
lower right) in the Table. Click on Blink and determine how far this stars’ position appears to shift in July. 
Each ring of the Bullseye counts as one “Grid Unit”. Estimate the shift, S, to the nearest 0.1 grid units 
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and enter it in the Table. Do this carefully! Do the same for any other star that shows a parallax shift. 
Note:  if you find a moving object (planet, etc.) you will need to measure its coordinates for the first January 
but leave the shift blank since the movement is actual and not caused by parallax. 
 
After completing your first field, choose another field (Starfield, etc.) and repeat the above procedure for 
each. 
 
Step2:  Processing the data 
 
Now that you have identified the stars in your fields with measurable parallaxes and have measured both 
their positions and parallax shifts, the next step is to calculate their distances. This is done in two parts. 
First, the shift in grid units must be converted to the parallax angle. Next, this parallax must be converted 
to a true distance to the star. 
 
The shift, S, is actually twice the parallax in grid units. This must be reduced to a real angle, which can be 
done by knowing the plate scale on the screen. The scale of the screen is 10 grid units = 1 arc-second.  Since 
the parallax is half of the measured angle, you must also divide by a factor of 2: 
 
 𝑝𝑝 (″) =  

𝑆𝑆
10

×
1
2

=
𝑆𝑆

20
 (7) 

 
Using this information, convert the total shift in grid units to the parallax angle in arc-seconds. Record this 
in your Data Table. Using the information provided in the Introduction (and Equation 5), determine the 
distances (in parsecs) to the stars with measurable parallaxes. Finally, convert these distances to units of 
light years, using the conversion 1 parsec = 3.26 light years. 
 

Question 7: As you have seen, parallax angles are small. But how small? Imagine 
someone holding up a dime (diameter = 1.8 cm) at a distance from you such that the dime 
appeared to have an angular size of 1″. How far away from you would that person be? Show 
all calculations. (Hint: Use Equation 3. In this case, the angular size of the dime is α and the 
dime’s physical diameter is the baseline b. The angle must be expressed in radians!) 
 
Question 8: The diameter of the Sun is 1,392,000 km (i.e., 1.392 x 1011 cm). If you were 
to construct a scale model of our Galaxy, such that the Sun was shrunk to the size of a marble 
with a diameter of 1 cm, how far away from the Sun would you have to place a model of the 
Earth? Express your answer in units of meters. How far away from the Sun would you have to 
place a model of the nearest star you measured in Part B above? Express your answer in units 
of km. Show all calculations. (Note, the Earth-Sun distance is 1 Astronomical Unit). 

 
Question 9: The fastest spacecraft ever launched by humans is the New Horizons 
mission, which has recently flown by the dwarf planet Pluto and the Kuiper Belt Object Ultima-
Thule. It achieved a velocity of approximately 16 km/sec shortly after launch. If a human-
launched spacecraft could sustain such a speed, how long (in years) would it take to reach the 
nearest star you measured in Part B above? How might such a journey be accomplished?  
Would you like to make this trip? Show all calculations.  

 
When finished with the computer program, Exit the exercise (File, Exit Parallax Lab), and then exit the 
program (File, Exit).  Finally, as usual, shut down the computer completely when finished. 
 

NOTE! See the “Useful Units and Conversions” on the next page!! 
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Useful Units and Conversions 
 
1 Astronomical Unit (AU) =  1.496 x 108 km  (Earth-Sun distance) 
1 light year   =  63,271 AU 
1 light year   =  9.461 x 1012 km 
1 parsec    =  3.26 light years 
1 year     =  31,557,600 seconds 
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Table 1: The Surveyor's Method 

The object you observed:   

β1 ( ˚     '     '' )       

β2 ( ˚     '     '' )       

b (feet)   

β1 (decimal degrees)   

β2 (decimal degrees)   

α (decimal degrees)   

distance d1 (feet)   

distance d2 (feet)   

Average Distance (feet)  

 
 

Table 2: Stellar Parallax Measurements 

Field # Star 
x  

position 
y 

position S Parallax Distance Distance 

(Jan 1) (Jan 1) (grid units) (arc-sec) (parsecs) (light yrs) 

 
A         

B         

C         

 

A         

B         

C       
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Lab J 

The Distance to a Star Cluster 
(Adapted from Contemporary Laboratory Experiences in Astronomy 

 
 

 
PURPOSE: 
 
To learn how astronomers can determine the distance to star clusters using a technique called Main 
Sequence Fitting. You will perform simulated photometry to measure the apparent B and V magnitudes of 
25 stars in the Pleiades cluster and use these data to determine the distance to the cluster. 
 
EQUIPMENT: 
 
Computer, CLEA computer program Photoelectric Photometry, scientific calculator or Excel spreadsheet. 
 
 
 

  

The Pleiades star cluster. 
 

Photo credit: NASA 
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Introduction:  Absolute Magnitudes and Distance 
 
In an earlier lab, you learned about the technique of Trigonometric Parallax, which allows astronomers to 
measure the distance to relatively nearby stars in a completely assumption-free way. This is important 
because accurate distances are needed to determine many intrinsic stellar properties. For example, if we 
know the distance d and measure the apparent brightness b of a star, then we can compute its intrinsic 
luminosity L from the inverse-square law formula relating these three quantities: 
 

 𝑏𝑏 =  
𝐿𝐿

4𝜋𝜋𝑑𝑑2 (1) 

 
The luminosity, which is the total energy emitted per second by the star, is related to the rate at which 
nuclear energy is released deep in the interior of the star.  Thus, the distance, while not an intrinsic stellar 
property itself, plays an important role in uncovering the intrinsic properties. Equation 1 could also be used 
to find the distance to a star, if its luminosity were known a priori, since the brightness b is always 
measurable. This method of distance determination is the subject of this lab.  
 
An alternative way that astronomers have of quantifying the luminosity of stars is the absolute visual 
magnitude MV.  It is defined as the apparent visual magnitude V a star would have if it were located at a 
distance of 10 pc.  As with V, which you measured in earlier labs, the more positive the value of MV, the 
fainter the star.  Because of the way MV is defined, the difference between a star’s actual observed value of 
V and its intrinsic value of MV is related to the star’s distance.  This difference is often called the distance 
modulus DM of a star and is defined as: 
 

 
The star’s distance is related to its distance modulus by: 
 

  
where the resultant distance is in units of parsecs.  Although they look very different, Equations 1 and 3 
are both expressions of the inverse square law of light.   
 

Question 1:  Use Equation 3 to calculate the distance to a star with a distance modulus of 
zero.  Show all steps of your work.  Is your answer consistent with the definition of MV? Explain. 

 
An important early result from the study of stars with known distances is that, for Main Sequence stars, MV 
and spectral type are well correlated.  This relationship is shown in Figure 1 below. The least luminous 
stars in the diagram are the cool M8 stars on the lower right, and the most luminous are the hot O5 stars on 
the upper left, with a systematic change in luminosity in between. You should recognize Figure 1 as a form 
of the HR Diagram, i.e., a plot of a star’s luminosity vs. its temperature – but using spectral type and MV as 
proxies for temperature and luminosity, respectively.   
 
Because a star’s spectral type and B-V color are related – we can replace spectral type with B-V and re-plot 
Figure 1 as a Color-Magnitude Diagram. This is shown in Figure 2.  The beauty of Figure 2 is that, if we 
know that a star belongs to the Main Sequence, then we need only measure its B and V  magnitudes to 
determine its distance. The procedure would be to (1) use the measured B-V color and Figure 2 to determine 
the star’s intrinsic MV, and (2) compute the distance using Equations 2 and 3 and the observed value of V.  
In this case, only photometric measurements are required, which can be made for large numbers of stars in 
a relatively short time. 

 DM ≡ (V – MV) (2) 

 𝑑𝑑 = 10^[(𝐷𝐷𝐷𝐷+5) 5]⁄  𝑝𝑝𝑝𝑝 (3) 
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Figure 1:  Absolute Magnitude vs. Spectral Type Relation 

Figure 2:  Absolute Magnitude vs. B-V Color Relation 
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The Importance of Star Clusters 
 
The shortcoming with this photometric approach is that the B-V color of a star is not sufficient to tell us 
whether or not the star belongs to the Main Sequence, and some other information would be needed to 
determine this – such as a carefully determined luminosity class. That’s where star clusters come in. A 
cluster is a physically related group of stars which all formed together, and all lie at the same distance from 
us, thus the distance modulus DM is the same for all the stars. If the V magnitudes and B-V colors of cluster 
stars are plotted against each other, the Main Sequence stars will form a pattern like that seen in Figure 2 
and thus be readily identifiable. Other types of stars, such as the intrinsically more luminous giants and 
supergiants will lie above the main sequence line and also be clearly distinguished. Once the cluster’s Main 
Sequence stars have been identified, the calibrated relation in Figure 2 can be used to determine the stars’ 
MV values and distance moduli. The distance to the cluster can then be computed as the average of the 
individual stellar distances, which should all yield consistent results. This general technique is known as 
the Main Sequence Fitting technique.   
 
Main Sequence Fitting can be applied to star clusters at far greater distances than feasible for Trigonometric 
Parallax. Knowing the distances to star clusters in our Milky Way galaxy, and thus their 3-dimentional 
spatial distribution, is important for understanding the structure of the Milky Way. An added value of 
determining a cluster’s distance from its Main Sequence stars is that, once the distance is known, the 
luminosities of all its other stars can be computed. In this way we can discover the intrinsic properties of 
other, less well-understood, types of stars. 
 
 

Lab Procedure 
 
In this lab you will perform the Main Sequence Fitting technique on a relatively nearby group of stars called 
the Pleiades star cluster.  This cluster – shown on the first page of the lab – is in the constellation Taurus 
and is readily visible to the naked eye. You will first perform simulated photometry of the cluster’s stars, 
and then determine the mean distance modulus.   
 
You will use a realistic simulation of a photoelectric photometer attached to a moderate-sized research 
telescope to collect data on 25 stars in the region of the Pleiades star cluster. The simulation allows you to 
select different filters to isolate the wavelength regions of interest and to select your desired integration 
time.  For this lab, you will measure the V and B magnitudes, and determine the B-V color for each of your 
program stars. To save you time, the simulation will automatically compensate for the effects of 
atmospheric extinction. You, however, will have to measure the brightness of the sky, so that its effects can 
be removed from your data.  
 
 
A.   MAKING THE MEASUREMENTS 
 
Step 1:  Launch the simulation 
 
In the “MSE Astrolab” folder, launch the Photoelectric Photometry program.  Click File, Log In… to open 
the Student Accounting screen.  Enter your name, without using any punctuation marks, then click OK to 
continue. 
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Step 2:  Open the observatory 
 
Click File, Run to activate the observatory, and then take a moment to study the various controls available  
to you. You now have command of a 16” research-grade astronomical telescope equipped with a 
photoelectric photometer.  Click on Dome to slide the observatory dome doors open, which will reveal the 
night sky in the direction of the Pleiades star cluster, as seen through the finder telescope.  This view of the 
cluster is shown above in Figure 3.  The region shown is the same as illustrated in the photo on page 1 of 
the lab.  Compare the two to verify this.  You can use Figure 3 to keep track of the stars you observe for 
your distance determination. Note that the brightness of the stars in Figure 3 (and in the simulation) is 
indicated by the symbol size – the brighter the star, the larger the symbol.   
 
You should observe that the stars visible through the finder telescope seem to be drifting towards the right, 
which is the westward direction. This is because the Earth is rotating and, in general, causes astronomical 
objects like the Sun to “rise” in the East and “set” in the west. Telescopes are equipped with a motor drive 
which moves the telescope in the same direction as the drift and at the same rate. The motor (often called 
the clock drive) cancels the effect of the Earth's rotation and the stars seems to stand still, permitting 
extended study.  Turn on Tracking and note how the stars cease to drift. 
 
Step 3:  Move to a star 
 
Once the dome is opened, a small red square in the center of the view appears (see Figure 3).  This is the 
field of view seen by the photometer, when activated. The star you wish to observe must be carefully 
positioned within this field to be measured.  To move a star into the field, click and hold one of the N, S, 
E, or W buttons.  Note that these directional controls move the telescope, not the sky!  Moving the telescope 
to the west appears to make the stars move in the opposite direction. Try it. The Slew Rate control changes 
how much the telescope is moved each time the directional controls are used.  Try it, too. 
 
Now move the telescope so that one or more stars appears inside the field of view of the photometer. 

Figure 3: The Pleiades cluster as seen through the finder telescope in the simulated observatory. 
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Step 4: Take sky readings 
 
Click on Change View to enter Instrument mode and activate the photometer.  The computer screen will 
look as shown in Figure 4.  The aperture, through which light passes to the photometer, is shown as the 
small circle in the center of the field.  Because the aperture is much larger than the star under study, and the 
sky is not perfectly dark, the sky within the aperture contributes a certain number of photons to the 
measurements of the stars.  These unwanted photons are counted by taking a “sky” reading, with no star in 
the aperture.  The star to be measured is then centered in the aperture and a “star+sky” reading is taken.  
Then the true photon count for the star by itself is approximated by the “star+sky” reading minus the “sky” 
reading.  It is important that both the sky and the star reading be taken through the same color filter and 
with the same aperture size.   
 
Move the telescope until the aperture (circle) is free of any star, then click on Take Reading.  A new 
window will open (“CLEA Photometer Window”), containing the photometer controls.  Clicking the Filter 
button cycles through the U, B, and V filters.  Make sure the integration time is set to 10.0 seconds (by 
clicking the Seconds button) and that the number of integrations to be performed is set to 3 (by clicking the 
Integrations button).  Now, whenever the Start Count button is clicked, the photometer will count photons 
for a total of 30 seconds, in three groups of 10 seconds each.   
 
Select the V filter and press Start Count.  When the measurement is finished, record the result (Mean Sky 
Counts/Sec) in Table 1 (or in an Excel spreadsheet if provided by your instructor).   Now switch to the B 
filter and repeat.   When you are finished, press the Return button to close the CLEA Photometer Window.  
The observatory computer recognized that these were blank sky measurements by the absence of a star in 
the aperture.  Every stellar measurement made from now on will have this sky brightness removed before 
the final magnitude is returned.  In a real observing session, an astronomer would likely measure the sky 
brightness in a small patch of blank sky adjacent to each target star, to account for spatial and temporal 
variability.  To save time, however, we will assume that the sky brightness is spatially uniform and 
unchanging throughout the night.  Thus, this single set of sky measurement will be applied to all the stellar 
measurements. 
 
  

Figure 4:  The “Instrument Mode” screen 
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Step 5:  Measure the stellar B and V magnitudes 
 
Move the telescope to center a star in the aperture. The right ascension and declination of the aperture center 
are displayed in the lower left of the screen.  Click Take Reading and select a filter (B or V) and an 
integration time in the Photometer Window.  Use short integration times for bright stars, and long 
integrations for faint stars.  
 
Now click Start Count. The computer will take a series of three integrations and display the individual and 
average photon counts in the Photometer Window. After the integrations are completed, the apparent 
magnitude of the object under study in the chosen filter is displayed in the Magnitude box (lower right 
corner). This value has been corrected for the effect of sky brightness. Also displayed is the signal-to-noise 
ratio (S/N Ratio) of the reading. A high S/N means you have a lot of desired photons, and only a little noise.  
You should strive for S/N figures of at least 100. You can increase the S/N by increasing the integration 
time or increasing the number of integrations. For most of your measurements, an integration time of 1 
second will be sufficient.  If the resultant S/N value is too low, then switch to 10 sec.  (Never use 100 sec - 
it takes too long!)  Always use three integrations. 
 
For each of 25 stars in the Pleiades star cluster, record the Star Name, B magnitude, and V magnitude in 
Table 2 (or in an Excel spreadsheet).   Record all magnitudes to the nearest 0.01 magnitude.   Be sure to 
include both bright and faint stars in your sample to cover the Main Sequence over the widest possible 
range.   
 

NOTE: You must observe at least two stars with V  >  12. 
 
 
B.  PREPARING THE DATA 
 
Step 1:  Compute the B-V color index 
 
Compute the B-V color for each star by subtracting its V magnitude value from its B magnitude.  Record 
the result in Table 2 (or in your spreadsheet).  Remember from an earlier lab that hot blue stars have low, 
and even negative,  B-V values while cooler red stars have B-V values of +1 or greater. 
 
Step 2:  Make a Pleiades color-magnitude diagram 
 
Using the graph provided at the back of the lab (or your Excel spreadsheet), make a color-magnitude 
diagram of your Pleiades data, using the V magnitude on the y-axis and the B-V color on the x-axis.  If you 
are using Excel, your plot should be modeled on the blank graph in the back of the lab.  Be sure that the 
y-axis is oriented so that the brighter stars are at the top of the diagram. 
 
Step 3:  Make a calibrated Main Sequence color-magnitude diagram 
 
Now plot, in the same fashion as above (by hand on the graph provided or with Excel), a calibrated color-
magnitude diagram for Main Sequence stars using the data in Table 3, which is taken from Allen’s 
Astrophysical Quantities, 4th Edition (2000).  This version of the diagram, which you have already seen in 
Figure 2, uses the luminosity of the stars (in the form of MV) rather than the apparent brightness (in the 
form of V) on the y-axis.  Your graph should resemble Figure 2. 
 

Question 2:  Do you recognize the presence of the Main Sequence in your V vs. B-V diagram 
for the Pleiades stars?  Describe it.  Do all  your stars seem to be Main sequence stars?  Identify 
the Main Sequence on your plot.  (If you are using Excel, you may have to wait until you print 
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out the plot at the end of lab and then use pencil to do the labeling.) 
 
 
C.  DETERMINING THE PLEIADES DISTANCE 
 
Step 1: Measure the distance modulus DM 
 
If your instructor provided you with an Excel spreadsheet for recording your data, follow his/her directions 
for determining the distance modulus DM. Record your value for DM in Table 4 and then jump down to 
Question 3. 
 
If you used the graphs provided with the lab and plotted your data by hand, follow these instructions: 
 

Overlay and slide the two graphs up and down until the Main Sequence on the Absolute Magnitude 
plot best aligns with the Main Sequence on your Apparent Magnitude (Pleiades Cluster) graph.  
Keep the y-axes precisely parallel.  Seek a best fit for the central portion of the combined patterns.  
The cool red stars in the lower right of your cluster graph are quite scattered and may not fit very 
well. 
 
Consider what you are doing:  You have graphs of two groups of main sequence stars.  One graph 
is in terms of visual Apparent Magnitude (V) and the other one in visual Absolute Magnitude (MV).  
When the patterns are matched, each star on the combined main sequence can be described either 
in terms of V or MV.  It just depends on which scale you read. 
 
So, once the two Main Sequence patterns are aligned, a fixed relationship is established between 
the Apparent and Absolute Magnitude scales, no matter where you read the y-axis or which star 
you pick.  So, pick any convenient magnitude on the Absolute Magnitude scale and read its 
corresponding Apparent Magnitude on the paper scale.  Read each scale to the nearest 0.1 
magnitude. 
 
You must sketch the Main Sequence curve from the Absolute Magnitude plot onto your Pleiades 
graph. 

 
Now that you’ve determined the distance modulus DM, answer the following question: 
 

Question 3:  What distance modulus (DM) do you find?  If you used the two graphs provided 
with the lab, then list the values of the Absolute Magnitude and the corresponding Apparent 
Magnitude which lead to this determination.  

 
Step 2:  Compute the distance 
 
Use Equation 3 to compute the distance to the Pleiades in parsecs.  Then convert to light-years (where 1 
pc = 3.26 ly).  Record these values in Table 4. 
 
 
  



J-9 
 

D. SUMMARY QUESTIONS 
 

Question 4:  How well did you do?  Recently (in 2014), astronomers at the National Radio 
Astronomy Observatory determined a precise distance to the Pleiades cluster of 443 light 
years, with an estimated uncertainty of only about 1%. Assuming that this is the correct result, 
what is the percentage error in your measurement?  What do you think are the major sources 
of uncertainties in your result?    

 
Compute the % Error of your measurement using the following formula: 
 
 

% Error =  �
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚

𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚
� × 100 (4) 

 
Enter this result in Table 4. 

 
 
 

Question 5:  Look over your Pleiades color-magnitude diagram and the stars you identified as 
main sequence stars.  Does your sample contain any red giant stars?  How would you recognize 
red giants on your plot?  How are they different from main sequence stars of the same 
temperature?  If you do have red giants, list them in Table 5 and label them on your plot. 
 
Question 6:  How would your distance estimate for the Pleiades have changed if you had based 
your distance modulus measurement only on a single red giant star that you mistakenly thought 
was a main sequence star? Explain your answer.  

 
Question 7:  Consider a star in the direction of the Pleiades with V = 18.0 and B-V = 0.1.  It 
would seem curiously out of place with respect to the main sequence.  Have you talked in class 
about any type of star that might lie in this place on the color-magnitude diagram?  (Yes, you 
probably have.)  How would such a star be different from main sequence stars of the same 
temperature?   
 
 
 
 

*** EXTRA CREDIT QUESTION*** 
Note: because this is extra credit, you may not ask your instructor for help! 

 
Question 8:  If you lived out in the Pleiades and looked in the direction of Earth, how bright 
would the Sun be in the nighttime sky? I.e., what would its V magnitude be? Would the Sun be 
visible to the naked eye?  (Our eyes can see stars as faint as V~ 6.) Explain your reasoning.  
Note: The Sun is a G2 V star with B-V = 0.62.  
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Table 1: Sky Brightness 

Filter Mean Sky  
(counts/sec) 

B  

V  
 
 

Table 2: Pleiades Photometry Data Sheet 
 

 Star Name B V B-V 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

11     

12     

13     

14     

15     

16     

17     

18     

19     

20     

21     

22     

23     

24     

25     
 



J-11 
 

Table 3: Main Sequence Color-Magnitude-Spectral Type       
Calibration 

Spectral Type Absolute Magnitude B-V 

O5 -5.70 -0.33 
B0 -4.00 -0.30 
B5 -1.20 -0.17 
A0 +0.65 -0.02 
A5 1.95 +0.15 
F0 2.70 0.30 
F5 3.50 0.44 
G0 4.40 0.58 
G5 5.10 0.68 
K0 5.90 0.81 
K5 7.35 1.15 
M0 8.80 1.40 
M5 12.3 1.64 
M8 16.0 1.80 

 
 
 
 

Table 4: The Distance to the Pleiades 
 

DM d d % error (pc) (light years) 

    

 
 
 
 

Table 5: Possible Red Giant Stars 
 

 Star Name 

1  

2  

3  
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Lab K 
Measuring the Mass of the Andromeda Galaxy 

(Adapted from Astro Labs, University of Maryland) 
 

 
 
PURPOSE: 
 
To measure the mass of the Andromeda Galaxy using the orbital motions of the stars and gas clouds in its 
disk.  The distribution of mass within the visible galaxy will be examined and evidence found for 
significant amounts of “unseen matter.” 
 
EQUIPMENT: 
 
AstroLab computer program, ruler, and Excel spreadsheet or calculator. 
 
 

 
The Andromeda Galaxy 

Photo credit: Robert Gendler 2002 
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Introduction: Galactic Rotation & Mass 
 
One of the most fundamental properties of a galaxy is its mass, which plays a critical role in galaxy 
formation and evolution. The masses of astronomical objects are, in general, difficult to measure because 
we are not able to put the objects on a scale or a spring balance. Astronomers have had to be clever and 
figure out what kinds of observations – necessarily made from distances of millions, billions or trillions of 
miles – can shed light on an object’s mass. This is where gravity comes in.  The force of gravity between 
any pair of objects is known to depend on both the masses of the objects and the separation between them. 
And so, if we can observe the gravitational interaction between objects in space, we can work backwards 
and determine the masses of the objects. This is the primary technique used for determining the masses of 
individual stars, namely, through measurements of the orbits of binary stars (which are stars gravitationally 
bound to each other and orbiting a common center).   
 
Gravity can also be used to measure the masses of entire galaxies.  The most visible parts of spiral galaxies 
are large, flattened, rotating disks consisting of stars and interstellar clouds of gas and dust particles.  These 
move within the disk in nearly circular orbits around the centers of their galaxies, and their orbital properties 
are controlled by the collective mass of the galaxy itself.  Thus, by measuring the orbital properties of the 
components of a galaxy – specifically, the orbital radii and speeds – the mass of the galaxy can be 
determined.     
 
The key to deriving a spiral galaxy’s mass is Kepler’s Third Law, which was discovered by the German 
mathematician/astronomer Johannes Kepler in the early 1600’s from observations of Solar System objects. 
Kepler’s Third Law can be stated as: 
 

 𝑀𝑀<𝑎𝑎 = 𝐾𝐾 
𝑎𝑎3

𝑃𝑃2
 (1) 

 
where, in our application, a is the radius of a star’s or gas cloud’s orbit around its galactic center, P is the 
orbital period, M<a is the mass of the galaxy within a distance a from the center, and K is a constant whose 
value depends on the units chosen for M, a, and P.  Measurements of a and P allow the enclosed mass to 
be determined.  If these measurements are made at a range of orbital radii, then we can build up a picture 
of how the mass within a galaxy is distributed, as well as an estimate of the galaxy’s total mass. 
 
This is the procedure you will carry out in today’s lab, in which you will make measurements of a nearby 
spiral galaxy called Andromeda. The Andromeda galaxy, shown on the first page of the lab, is usually 
considered to be a twin to our own Milky Way galaxy and shows us what our galaxy would look like if 
viewed from a distance of about 2.5 million light years. You will investigate the rotation properties of 
Andromeda by measuring the orbital radii and speeds of its stars and interstellar clouds at a variety of radii 
and then determine the total mass and mass distribution of Andromeda.  This will lead to a startling 
discovery about the nature of the matter making up galaxies in our Universe.  
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Lab Procedure 
 
Measuring the orbital speed of stars or interstellar clouds in other galaxies is difficult because we do not 
have the luxury of simply watching a galaxy rotate and determining the orbital speeds from the time needed 
to complete a rotation.  This would generally take hundreds-of-millions of years, which is beyond the 
attention span of most people. Indeed, because of the great sizes and distances of galaxies (and their 
relatively slow rotation speeds), it is never possible to directly observe any transverse motion – i.e., motion 
across the line-of-sight – in a galaxy’s components. The best we can do is to measure the radial motion – 
i.e., motion along the line-of-sight – of objects in a galaxy using the Doppler Effect, which you learned 
about in your lecture class. By carefully choosing the locations of the observations, and knowing something 
about the orientation of a galaxy, these radial motions can be corrected to yield the true orbital speed of a 
star or interstellar cloud. From this, the mass of a galaxy and its mass distribution can be inferred. 
 
A.  TILTED ROTATING DISKS 
 
Step 1:  Launch the Simulation 
 
Launch the AstroLab program in the “MSE Astrolab” folder and choose Galactic on the opening screen to 
start the lab.  The first part of the program demonstrates the motion of a rigid circular disc, like a Frisbee 
or a DVD.  The main part of the display is a representation of the disc with arrows indicating the direction 
of motion.  To the right is a "side view" showing the observer's eye looking at the rotating disc.  As you 
move the cursor around on the disc with the mouse, the displays show the distance from the center of the 
disc, the true rotational velocity at that point, and the line-of-sight velocity that would be measured via the 
Doppler Effect. 
  
Step 2:  Investigate the effects of inclination 
 
In this first display, the disc is being viewed face-on, corresponding to an inclination angle of i = 90°.  In 
this case, all of the rotational motion is in the transverse direction (i.e., in the plane of the sky) and none of 
it is in the radial direction.  Verify this by moving the cursor around in the disk.  You should see that the 
“Velocity in line of sight” (i.e., the radial component which would be measured by the Doppler shift) is 
always 0. 
 
Now cycle through a set of different inclination angles by clicking ChangeInclination.  Notice that the 
apparent shape of the disk becomes flatter as the inclination approaches zero, although the largest diameter, 
called the major axis, is always the apparent diameter of the true circular form. If the true shape of the disk 
were known to be circular, then it would be possible to determine the inclination from the apparent flatness 
of the projected disk.  You will do this below in Step 3 to measure the inclination of the Andromeda galaxy. 
 
Now let’s see how the inclination angle affects the line-of-sight velocities.  Remember, these are the 
velocities you would actually measure using the Doppler shift.  Select one of the inclinations angles 
between 0° and 90° (i.e., either, 18°, 22.5°, 30°, or 45°).  Put the cursor at the position X = –450, Y = 0 
and record the values of the “Rotational Velocity” and “Velocity in line of sight” in the appropriate places 
in Table 1.  Now do the same for the rest of the X, Y positions listed in Table 1.  Notice that these 
positions sample the rotation across the major axis of the disk, on both sides of the center. 
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Now look at Figure 1 below.  It is a “side view” of the rotating disk (or galaxy), like that seen in the upper 
right of the simulation.  Figure 1 shows that, when the line-of-sight velocities vlos are measured along the 
major axis, there is a simple trigonometric relationship between vlos (which we can measure) and the actual 
rotational speed vrot (which we want to know).  This relationship is: 
 
 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙) =  𝑣𝑣𝑟𝑟𝑙𝑙𝑟𝑟  × cos 𝑖𝑖 (2) 

 
Solving for vrot yields:  
 
 𝑣𝑣𝑟𝑟𝑙𝑙𝑟𝑟 = 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙) ÷ cos 𝑖𝑖 (3) 

 
You will recall that vlos can be either negative or positive, depending on whether the object being observed 
is approaching or receding, respectively.  Equation 2 recovers only the magnitude of vlos, not the direction 
– hence the use of the absolute value function.  Let’s test Equation 3 using the data you just collected.  
For each of the vlos measurements you entered in Table 1, compute the quantity 𝑨𝑨𝑨𝑨𝑨𝑨(𝒗𝒗𝒍𝒍𝒍𝒍𝒍𝒍) ÷ 𝐜𝐜𝐜𝐜𝐜𝐜 𝒊𝒊 and 
enter in the appropriate column.  If our understanding is correct, then this modified value of vlos should be 
identical to the actual value of vrot you measured.  If you are using Excel, remember that angles have to be 
converted from degrees to radians before performing trigonometric calculations. 
 

Question 1:  Do your values for 𝐴𝐴𝐴𝐴𝐴𝐴(𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙) ÷  𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 agree with the true rotation speeds vrot 
for all positions along the major axis?  Do you agree that, if you can measure the line-of-sight 
velocities of objects along the major axis in a tilted spiral galaxy, then you can determine their 
true orbital velocities (provided you know the inclination angle i)?   
 

Step 3:  Measure the inclination of the Andromeda galaxy 
 
Since the distributions of stars and interstellar clouds within spiral galaxies are known to resemble thin 
circular disks, the flattened shape of the Andromeda galaxy shows that it is not being viewed in a face-on 
orientation ( i.e., i ≠ 90°).  To determine the inclination angle i, we simply need to assume that the true 
face on shape is circular and then measure the relative sizes of the major axis and the minor axis.  The 
minor axis is the smallest diameter of the oval-shaped image and is perpendicular to the major axis, passing 
thru the apparent center of the galaxy.  (In the simulation, it is the line connecting points A and B.) 
 
 

Figure 1:  The effect of inclination on observed velocities 
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Using the photograph of Andromeda supplied on the last page of the lab and a ruler, measure the long 
diameter and the short diameter of the Andromeda image.  You will have to be consistent in your estimate 
of the locations of these diameters and the extent of the galaxy in both directions.  Enter the results in first 
two lines of Table 2. 
 
Now refer back to Figure 1.  A little trigonometric insight should show you that the relationship between 
the major and minor axis lengths is given by: 
 
 minor axis = major axis ×  sin 𝑖𝑖 (4) 

 
This relationship can be rearranged to express the inclination in terms of the major and minor axis lengths: 
 

 𝑖𝑖 = sin−1 �
minor axis
major axis

�  (5) 

 
Compute Andromeda’s inclination angle i from your measurements and enter it in both radians and degrees 
in the third and fourth rows of Table 2.  If you are using Excel, remember that the inverse sine function is 
given by “ASIN”.  Also note that Excel will return the angle i in radians.  To convert to degrees, use the 
“DEGREES” function. 
 
 
B.  THE ROTATION CURVE OF ANDROMEDA 
 
Click NextPart on the lab menu bar to proceed to the measurement of Andromeda’s rotation properties.  
 
Step 1:  Set the major axis 
 
The computer screen shows a picture of the Andromeda Galaxy.  Above the image there is a line with two 
small filled circles at both ends and another to indicate the center.  Your first job is to move this line into 
a position so that it represents the major axis of Andromeda.  You can control the tilt of the line and the 
location of its center by clicking and dragging the filled circles.  Now, position the line so that it runs down 
the long axis of the galaxy with the center circle at the center of the galaxy. 
 
Step 2:  Measure the Doppler shifts 
 
If we were actually doing this experiment, we would take spectra at various points along the major axis 
line, measure the Doppler shift and determine the radial velocity.  We would then measure on the 
photograph the distance from the center to the various points at which the spectra were taken.  These 
measurements would usually be made in some convenient units (e.g., mm) and then converted into real 
distances (e.g., in parsec) by using the known distance to Andromeda.  This is obviously a time-consuming 
task and, to save time, all these calculations will be done for you by the simulation program.  Notice that 
there is a small "bead" that moves along the line as you move the cursor around.  This bead marks the point 
where you are "taking a spectrum" and measuring the radial velocity via the Doppler shift.  The readouts 
at the bottom of the screen give the line of sight (radial) velocity of the point at which the bead is located 
and its actual distance from the center of the galaxy (“a”) in units of kiloparsecs (kpc), where 1 kpc = 1000 
pc. 
 
Starting at the north-east (upper left) corner of Andromeda, position the cursor at each of the a values listed 
in the first column of Table 3 and record the line-of-sight velocity, vlos in column 2 of the table.  Work 
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down thru the center of Andromeda and end up in the south-west corner, 27 kpc from the center. 
 
Step 3:  Determine the systemic motion 
 
If you recall the demonstration of the rotating disks (Part A of the lab), you should realize that there is 
something wrong. For the rotating disk, the center point did not move and had a zero velocity. However, 
the radial velocity at the center of this galaxy is far from zero.  This is because there are other motions 
involved besides simple rotation. Andromeda and our galaxy may be getting closer together or further away 
from one another. Our Sun is presumably revolving around the center of our Galaxy. The Earth is revolving 
around the Sun and rotating on its axis. All of these motions can add to or subtract from the radial velocity 
due just to the actual rotation of Andromeda. The motions of the Sun and Earth are reasonably well known 
and are corrected for in the values you have just measured. However, the overall motion of Andromeda 
with respect to us is still in the data and has to be determined. The simplest way to do this is to assume that 
the center of Andromeda is not rotating and that all the motion we see there is systemic, i.e., is due to the 
overall motion of Andromeda. 
 
Record the velocity at the center and enter it in Table 4. Alternatively, you can also estimate the systemic 
velocity by averaging all the velocities you measured, as long as the points are symmetrically placed on 
either side of the “true” center of the galaxy. Determine the average velocity and enter it in Table 4.  
Indicate in the table whether the systemic velocity implies that Andromeda is approaching or receding. (Is 
the value negative of positive?) 
 

Question 2:  Which velocity do you think gives a better estimate of the systemic velocity of 
Andromeda?  The center velocity or the average velocity?   Explain. 

 
Step 4:  Correct for systemic motion   
 
To correct the line of sight velocities for the systemic motion of Andromeda, you must simply subtract the 
systemic velocity from the vlos values you previously recorded in Table 4.  I.e., 
 

 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑙𝑙𝑟𝑟𝑟𝑟 =  𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑣𝑣𝑙𝑙𝑠𝑠𝑙𝑙𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 (6) 
 
Do this, using the value you think best represents the systemic velocity, and record the results in Table 3 
in the column labeled 𝒗𝒗𝒍𝒍𝒍𝒍𝒍𝒍𝒄𝒄𝒍𝒍𝒄𝒄𝒄𝒄.  Be careful when subtracting negative numbers! 
 
Step 5:  Correct for the inclination of Andromeda 
 
Finally, you have to correct for the fact that the galaxy is tilted and, thus, the measured radial velocities are 
not the true rotation speeds.  In Part A, you measured the inclination of Andromeda and saw how 
inclination affects the observed line-of-sight velocities.  Now you will apply Eq. 3 to your measure values 
of 𝒗𝒗𝒍𝒍𝒍𝒍𝒍𝒍𝒄𝒄𝒍𝒍𝒄𝒄𝒄𝒄 to derive the true rotation speeds of objects it the Andromeda galaxy.  Perform this correction on 
your data, and enter the results in the last column of Table 3. 
 
Step 6:  Draw the rotation curve 
 
From your data in Table 3, make a plot of the true rotational speed vrot vs. the distance a from the galactic 
center.  Use the graph provided at the end of the lab or, alternatively, use Excel to make the plot.  Draw a 
smooth curve that best fits all of the points.  This is called the “Rotation Curve” of the Andromeda galaxy 
and describes how the orbital speeds of objects in Andromeda vary with distance from the center of the 
galaxy.  Your rotation curve should be reasonably symmetric.  That is, the velocities on one side of the 
galactic center should be about the same as the velocities of on the other side of the center.  If you see a 
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large systematic difference between the two, then you may have made an error in determining the 
systemic velocity.  Check this! 
 
If you are using Excel, be sure to match the axes and labels to those of the graph provided with the lab.  
Plot the data points without connecting lines or curves.  Then use the Trendline to fit a smooth curve 
through the data points.  Try a polynomial and vary the order until the curve looks something like what 
you would draw by hand.   
 
C.  THE MASS OF ANDROMEDA 
 
You are now ready to transform your rotation measurements into a map of the distribution of mass within 
Andromeda.  In the Introduction to the lab, you saw that Kepler’s Third Law gives the crucial connection 
between the orbital properties and mass – you will now apply that equation. 
 
Step 1:  Prepare the data 
 
The first two columns of Table 5 already contain the orbital sizes at which you measured the rotation speed, 
in the original units of kpc and converted to Astronomical Units (AU).  From the smooth curve you drew 
through the data on your Rotation Curve graph (or fit using Trendline), carefully read the values of vrot at 
these positions and enter them in the third column of Table 5.  (Alternatively, you can average your 
measurements for corresponding distances on either side of Andromeda’s center.) 
 
Now you’ll determine the orbital period P corresponding to each orbital radius.  The orbital period is 
simply the distance traveled in one orbit divided by the orbital speed.  The distance traveled is the 
circumference of the orbit, given by 𝟐𝟐𝟐𝟐𝟐𝟐.  Combining these facts, and taking care to consider the units 
with which the measurements are made, yields: 
 

 𝑃𝑃 =  29.7 
𝑎𝑎 
𝑣𝑣𝑟𝑟𝑙𝑙𝑟𝑟

 𝑦𝑦𝑦𝑦𝑎𝑎𝑦𝑦𝑐𝑐 (7) 

 
where the resultant period will be in units of years if the orbital size a is measured in AU and the orbital 
speed vrot in km/sec.  Using Eq. 7, compute the value of P for each of the positions in Table 5 and enter 
them in the fourth column of the table. 
 
Step 2:  Compute the “enclosed masses” 
 
Finally, compute the mass enclosed within each orbit.  With the proper choice of units, the constant K in 
Kepler’s Third Law (see Eq. 1) will be 1.  Choosing those units yields: 
 
 

𝑀𝑀 =  
𝑎𝑎3

𝑃𝑃2
 𝑀𝑀ʘ (8) 

 
where the resultant mass will be in units of the Sun’s mass if the orbital size a is measured in AU and the 
period P in years.  
 
Use Eq. 8 to calculate the mass of Andromeda interior to each orbit and enter this mass in the last column 
of Table 5.  Make a plot of the enclosed mass as a function of distance from Andromeda’s center, using 
the enclosed graph.  If you use Excel, match your axes and labels to those of the graph provided with the 
lab 
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D.  WHAT IT MEANS 
 
Examine the masses that you have calculated.  As you go further out from the center, you include more of 
the galaxy and the enclosed mass naturally increases.  Eventually you would expect to get to the "edge" of 
the galaxy, where you have included all the mass.  At this point, the enclosed masses should “flatten out” 
to a constant value (the total mass of the galaxy), since increasing the distance from the center no longer 
includes any new material. 
 

Question 4:  Careful study of Andromeda has shown that more than 90% of its stars lie in the 
disk within a distance of ~20 kpc from the galactic center.  Thus, the disk can be said to have 
a radius of approximately 20 kpc and we would expect the mass distribution to be flattening 
out by this point.  From your plot, what is the mass within a radius the size of the stellar disk 
(i.e., 20 kpc)?  What is the mass within the maximum radius you measured?  Do you observe 
that the mass distribution has flattened out at the edge of the stellar disk?  Have your 
observations reached the “edge” of Andromeda’s mass distribution?  Explain.  If so, how far 
from the center is the edge? 

 
You should see that something strange is going on!  Your measurements of the enclosed mass of 
Andromeda keep on increasing, far beyond the edge of the stellar disk.  This tells you that there is a 
significant amount of material beyond the stellar disk, even though the galaxy looks dark out there.  Thus, 
Andromeda is much bigger and more massive than its obvious stellar disk.  The nature of this material, 
which is called “Dark Matter” because it does not emit or absorb light, is unknown and is one of the 
biggest mysteries in modern astronomy! Evidence for Dark Matter has been found in almost all galaxies, 
including the Milky Way, and is the dominant mass component of galaxies.  
    

Question 5:  Based only on the observations you have made; do you know the size of 
Andromeda or its total mass?  Explain. 

 
Question 6:  It has been said that looking at a galaxy in visible light is like looking at the “tip 
of an iceberg.”  Explain this statement considering what you have learned above. 
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X Y
Line of Sight Velocity 

(vlos)
Rotational Velocity 

(vrot)
ABS(vlos)÷cos(i)

-450 0
-350 0
-250 0
-150 0
-50 0
50 0

150 0
250 0
350 0
450 0

Table 1: Inclination and Line of Sight Velocity

Inclination (i) =

Table 2: Inclination of the Andromeda Galaxy

   Major axis  (cm)
  Minor axis (cm)

Inclination i  (°)
Inclination i  (radians)
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vlos vlos
corr vrot

(km/s) (km/s) (km/s)
27.0 NE
24.0 NE
21.0 NE
18.0 NE
15.0 NE
12.0 NE
9.00 NE
6.00 NE
3.00 NE
0.00
3.00 SW
6.00 SW
9.00 SW
12.0 SW
15.0 SW
18.0 SW
21.0 SW
24.0 SW
27.0 SW

Table 3: Andromeda Rotation Data

a
(kpc)

Velocity at Center (km/s)
Average Velocity (km/s)
Approaching or Receding?

Table 4: Systemic Motion of Andromeda
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a a vrot P M
(kpc) (AU) (km/s) (yr) (M☼)

3 6.19E+08
6 1.24E+09
9 1.86E+09

12 2.48E+09
15 3.09E+09
18 3.71E+09
21 4.33E+09
24 4.95E+09
27 5.57E+09

Table 5: Kepler's Third Law Results
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The Andromeda galaxy 

 

Include this picture, 
marked with your 

estimates of the major 
and minor axes - and 

their sizes - with your 
lab report 
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Lab L 

The Expansion of the Universe 
(Adapted from Contemporary Laboratory Experiences in Astronomy) 

 
 

 
PURPOSE: 
  
To observe how the apparent recessional velocities of distant galaxies lead to the concept of an expanding 
Universe, from which the age of the Universe can be estimated.  
 
EQUIPMENT: 
 
Ruler, calculator, Microsoft Excel, and the CLEA program Hubble Redshift. 
 
 
 

 
The Expanding Universe 

(Credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb) 
 
 
 
 
  



L-2 

Introduction: The Expansion of the Universe 
 
Early in the1900’s, the astronomer V.M. Slipher obtained spectra to study the properties of a number of 
faint astronomical objects he referred to as “spiral nebulae.”  He noticed that the spectral lines in many of 
these nebulae were shifted towards redder wavelengths, as compared with reference lines created in the 
laboratory.  If these “redshifts” are interpreted as a result of the Doppler Effect, then they imply a 
systematic radial (or line of sight) motion of these galaxies.  I.e., Slipher’s data implied that most spiral 
nebulae were moving away from us.   
 
By 1929, Edwin Hubble had established that these spiral nebulae were actually vast galaxies similar to our 
own Milky Way galaxy.  In addition, using techniques he developed for determining the distances to these 
galaxies, he established that the redshifts of the galaxies were proportional to their distance from the Milky 
Way.  I.e., the more distant the galaxy, the faster it seemed to be moving away from us.  Figure 1, seen 
below, is taken from Hubble’s 1929 paper and shows a plot of the “recession velocity” versus distance.  
This type of plot has come to be known as the Hubble Diagram.  The solid and dashed lines represent 
Hubble’s first estimates of the linear relationship between velocity and distance, now referred to as the 
Hubble Law.  This relationship is represented quantitatively as: 
 
 𝑣𝑣 = 𝐻𝐻0 ×  𝑑𝑑 (1) 

 
where v is a galaxy’s radial velocity, as inferred from its redshift, and d is its distance.  The parameter H0 
is known as the Hubble Constant and represents the slope of the observed relation between v and d in the 
Hubble Diagram.  It is obtained through observations of numerous galaxies over a range of distances. 
 
If galaxies were randomly distributed throughout the universe and moving in random directions, there 
would be, on average, just as many of them approaching the Milky Way as receding from it.  Yet, Hubble's 
work convincingly showed that nearly all are actually moving away from our galaxy.  What could account 
for this surprising find?  Hubble and others concluded that the Universe itself is expanding in all directions.  
Galaxies generally appear to be moving further away from one another in much the same way that the 
galaxy pictures painted on the leftmost balloon in the picture on page 1 of the lab seem to move apart as 
the balloon is inflated.  Once we accept this expansion theory, “running the clock backwards” indicates 
that, at some time in the very distant past, the components of the universe were very much closer together.  
If we continue to run time backwards in this manner until everything “touches,” then reading our clock will 

Figure 1: The original Hubble Diagram 
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give us an estimate of the age of the universe.  Today we identify this event as the Big Bang – the origin 
of the Universe and the beginning of time.  The elapsed time since the Big Bang depends on the expansion 
rate of the Universe, which is characterized by the Hubble Constant.  As a result, a precise determination 
of H0 has been a high priority in astronomy since the 1930’s. 
 
 

Lab Procedure 
 
The software you will use in this lab simulates the operation of a computer-controlled spectrometer attached 
to a telescope at a large mountain-top observatory.  Using this equipment, you will determine the distances 
and recession velocities of several galaxies located in selected clusters around the sky.  From these data 
you will plot a graph of velocity versus distance (as in Figure 1) and determine the value of H0.  Using 
this value, you will then compute an estimate of the age of the Universe. 
 
So how does the equipment work?  The TV camera attached to your simulated telescope lets you see the 
galaxies, and you can steer the telescope so that light from a galaxy is focused into the slit of the 
spectrometer.  You can then turn on the spectrometer and begin to collect photons from the galaxy.  When 
enough photons are collected, you should be able to see distinct spectral lines from the galaxy (particularly, 
the “H” and “K” lines of the element calcium) and you will measure their wavelengths using the computer 
cursor.  The wavelengths will be longer than the wavelengths of H and K lines measured in laboratories, 
because the galaxies are moving away from us and the lines are all redshifted.  The spectrometer also 
measures the apparent magnitude V of the galaxy from the rate at which it receives photons from the galaxy.  
So, for each galaxy, you will have recorded the wavelengths of the H and K lines and the V magnitude. 
 
 
A.  COLLECTING THE DATA 
 
Step 1:  Welcome to the Observatory! 
 
Start the Hubble Redshift program in the “MSE Astrolab” folder  Click File, Login ... on the Menu Bar 
and enter your name.  Click OK when finished.  Then click File, Run to begin the nights observing.  
 
Step 2:  Prepare the equipment 
 
The screen shows the control panel and viewing window as found in the “warm room” at the observatory.  
Notice the Dome status is “Closed” and Tracking status is “OFF”.  To begin our evening’s work, first 
open the dome by clicking on the Dome button.  When the dome opens you will see a view of the night 
sky through the finder telescope, showing both stars and galaxies.  The finder scope is mounted on the side 
of the main telescope and points in the same direction.  It is used to locate the objects we want to measure, 
because the field of view is much larger than the view in the main instrument.  It is displayed on-screen by 
a CCD camera attached on the finder scope.  You can switch between the finder scope view and main 
telescope view by toggling the Change View button. 
 
If you look carefully, you will notice that the stars and galaxies seen through the finder scope are drifting 
slowly towards the west (right) side of the viewing screen.  As you learned in an earlier lab, this is because 
the Earth is rotating in space.  To be able to point the telescope at any particular object for the time needed 
to record the desired data, we must counteract this effect.  Click Tracking to turn on the telescope’s clock 
drive, which constantly corrects for the Earth’s motion.  The tracking status should switch from “OFF” to 
“ON” and the objects on screen should stop drifting. 
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Step 3:  Select your first target 
 
To find the objects for tonight's observing session, click once on the Field… item in the Menu Bar at the 
top of the control panel.  (Note: This option is only available if you are looking through the finder scope.)  
A small box will open, listing the names of six galaxy clusters that contain the objects we have selected for 
study tonight, along with the astronomical coordinates of their centers.  These clusters span a wide range 
of distances and your goal will be to observe one galaxy from each of five different clusters.     
 
Click on the cluster name Ursa Major I, then click the OK button.  The telescope will now “slew” (i.e., 
move rapidly) to the RA and Dec coordinates of the cluster.  When the telescope arrives at the coordinates, 
the view window will show a portion of the sky that was electronically captured by the CCD camera 
attached to the finder scope.  The screen should look like Figure 2 at the top of this page.  Both stars and 
galaxies are visible in the view window.  It is easy to recognize bright galaxies in this lab simulation, since 
the shapes of the brighter galaxies are clearly different from the dot-like images of stars.  But faint galaxies 
can look like stars, since we can't see their shape. Be careful! Make sure you observe galaxies and not 
stars!  If in doubt, ask your instructor!  
 
The square box in the center of the finder field shows the field of view of the spectrometer. Now move the 
telescope to place one of the galaxies the within the square box.  Do this by slewing the telescope with the 
mouse and the N, S, E, and W buttons.  Place the arrow on the N button and press and hold the left mouse 
button.  Notice the red light comes on to indicate the telescope is moving in that direction.  As in real 
observatories, it takes a bit of practice to move the telescope to an object.  You can adjust the telescope’s 
speed by using the mouse to press the Slew Rate button.  The slowest rate is 1 and the fastest is 16. 

 
Once the galaxy is within the box, switch to the spectrometer by pressing Change View.  Now fine-tune 
your pointing by moving the spectrometer’s “slit” (two short parallel lines) so that it is positioned directly 
over the galaxy.  Only light passing through the slit will enter the spectrometer.  The more light you get 
into your spectrometer, the stronger the signal it will detect, and the shorter will be the time required to get 
a usable spectrum.  Try to position the slit on the brightest portion of the galaxy to maximize the light 
entering the spectrometer. 
  

Figure 2: The simulated telescope control panel 
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Step 4:  Record your first spectrum 
 
When you are satisfied with the position of the galaxy, press the Take Reading button.  A new 
“Spectrometer” window will appear which contains a plot of intensity vs. wavelength (angstroms).  The 
plot will be empty initially.  To begin taking a spectrum, click Start/Resume Count.  The computer will 
plot the spectrum with the available data as it is accumulated.  Watch the Signal/Noise value at the bottom 
of the window.  We desire this value to be high, which means we have collected more photons from the 
Galaxy (the signal) than from the sky (the noise).  Click Stop Count when the Signal/Noise is greater than 
20 – the higher, the better.  If you stop the counting before a high-quality spectrum is achieved, you can 
always restart by clicking Start/Resume Count again. 
 
When you are happy with the quality of your spectrum, press Stop Count.  At this point, the spectrometer 
window should look something like Figure 3 below.  In Table 1, or on an Excel spreadsheet supplied by 
your instructor, record the following information for this observation: 
 

1. Object Name  
2. Integration Time (Seconds)  
3. Signal/Noise,  
4. Apparent Magnitude (V) 

 
The appropriate values are listed on the Spectrometer window below the spectrum. 
 
  

Figure 2: Your first spectrum! 
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Step 5:  Measure the H & K line wavelengths 
 
Look at your spectrum.  The most prominent features in the galaxy’s spectrum should be the H & K 
absorption lines of ionized calcium arising from many cool stars within the galaxy.  These lines are 
approximately 40 angstroms apart, with the K line having the shorter wavelength, and they should stand 
out clearly from the noise.  If not, continue to count photons.  If you are not sure about the data, check 
with your lab instructor to help you interpret your results.   
 
You now want to measure the wavelength of the centers of the H & K lines.  Press and hold the left mouse 
button, then move the cursor to your estimate of the center wavelength of the K line.  Release the mouse 
button. A tall crosshair will appear at the last mouse position and the wavelength and intensity of the point 
will appear at the top of the graph.  If you are not satisfied that you have selected the exact center of the K 
line, adjust the cursor position.  When you are satisfied, record the K line wavelength in Table 1.  Now 
repeat the procedure for the H line.  Note that the line intensities are not important for this lab and do not 
need to be recorded 
 
Step 6:  Observe the rest of your targets 
 
Now repeat steps 3, 4, and 5 for four more galaxies, one in each of four different galaxy clusters.  Record 
all your measurements in Table 1.  
 

Remember! 
Your final set of measurements should consist of one galaxy from each of five galaxy clusters. 
  
 
B.  COMPUTING VELOCITIES AND DISTANCES 
 
Step 1:  Compute the galaxy redshifts 
 
Compute the H & K line redshifts, for each of your target objects and enter the results in Table 2.  The 
redshifts are defined as: 
 
 𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟ℎ𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜆𝜆 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜆𝜆𝑙𝑙𝑚𝑚𝑙𝑙 (2) 

 
where the 𝜆𝜆 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 values are from Table 1.  The laboratory wavelengths 𝜆𝜆 𝑙𝑙𝑚𝑚𝑙𝑙 for the H & K lines are 
3968.847 Å and 3933.67 Å, respectively.  (Note: your redshift values should all be positive.  If they were 
negative, they would be called blueshifts!) 
  
Step 2:  Compute the radial velocities 
 
Use the Doppler Effect formula to compute the radial velocities v implied by the redshifts of the H & K 
lines and enter these values in Table 2.  The Doppler formula is given by: 
 

 𝑣𝑣 = 𝑐𝑐 ×  �
redshift
𝜆𝜆𝑙𝑙𝑚𝑚𝑙𝑙

� (3) 

 
where c is the speed of light (300,000 km/s).  The resultant velocity v has the same units as c.  After all 
the velocities are computed, average the H & K line results for each galaxy and enter that value in the last 
column of Table 2. These mean values will represent the radial velocities of the galaxies. 
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NOTE! 
Don’t confuse lower case “v” (which refers to velocity) with upper case “V” (which refers to 

the apparent magnitude of a star or galaxy in the visual spectral band)! 
 
Step 3:  Compute the galaxy distances 
 
You will recall from an earlier lab that the distance modulus DM of an object is the difference between its 
apparent magnitude V and its absolute magnitude MV.  I.e.: 
 
 𝐷𝐷𝐷𝐷 = 𝑑𝑑𝑖𝑖𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑𝑐𝑐𝑟𝑟 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 = (𝑉𝑉 −𝐷𝐷𝑉𝑉) (4) 

 
Asin the earlier lab, the distance modulus can be converted to distance via the relation: 
 

 
Using Equation 5, compute the distances to your five galaxies using your measured V magnitudes and the 
assumed values of MV = –22.0.  Enter the results in Table 3 in units of both parsecs (pc) and megaparsecs 
(Mpc). 
 
 
C.  THE HUBBLE CONSTANT AND THE AGE OF THE UNIVERSE 
 
Step 1:  Construct a Hubble Diagram and determine H0 
 
Now plot a Hubble Diagram by graphing the average velocity of each of your galaxies (in km/s) on the y-
axis vs. their distance (in Mpc) on the x-axis.  Use the graph provided on the last page of the lab manual 
or, as per your instructor, an Excel spreadsheet. If you use the included graph, draw a straight line which 
passes through the origin [i.e., (x, y) = (0, 0)] and best fits all the data points. The slope of the line is the 
Hubble Constant (H0), as defined in Equation 1, with units of (km/sec)/Mpc.  To calculate the slope 
of the line, determine a value of d and v from a point near the upper right end of the line you drew (do not 
use one of the points that you plotted).  The slope of the line will simply be equal to v/d, since the line 
passes through the origin.   
 
If you are using Excel, make sure that the axes and labels on your plot match those of the graph included 
with the lab.  To determine H0, fit a linear Trendline to your data.  In the Trendline options box, check the 
“Set Intercept” box and set the value to 0.0.  This will constrain the Trendline to pass through the origin.  
Be sure to have Excel print the equation of the Trendline on your graph. The slope of the Trendline is your 
estimate of H0 
 
Enter your value of the Hubble Constant H0, the current expansion rate of the Universe, in the top row of 
Table 4.  Notice the dimensions of  H0 (i.e., km/sec/Mpc).  H0 is represented this way because we 
typically measure galaxy velocities in units of km/sec and distances in Mpc.  If we had, instead, measured 
the galactic distances in units of km, then the units of H0 would have been km/sec/km which simplifies to 
1/sec.  This shows that the natural units for the Hubble Constant are inverse time.  Let’s now express H0 
in these more natural units. You could do this by re-plotting your Hubble Diagram with galactic distances 
expressed in km units rather than Mpc, and then re-determining the slope of the best-fit linear relation.  But 
a quicker way is to just divide your estimate of H0 by the number of kilometers in 1 Mpc.  Do this and then 
enter your result in the second row of Table 4. 
 

 𝑑𝑑 =  10^((𝐷𝐷𝐷𝐷+5) 5⁄ ) 𝑝𝑝𝑐𝑐 
  

(5) 
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Step 2: Compute the Age of the Universe 
 
As noted in the lab introduction, the Hubble Constant can be used in a very simple way to estimate the age 
of the Universe.  To see how this is possible, let’s start with an analogy. 
 
Suppose you had a driving trip to make and wanted to know how long it would take to complete. To find 
this time, you would simply divide the distance to be traveled by the speed of the car, using the equation: 
 

 
𝑑𝑑𝑖𝑖𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑𝑐𝑐𝑟𝑟
𝑣𝑣𝑟𝑟𝑚𝑚𝑚𝑚𝑐𝑐𝑖𝑖𝑖𝑖𝑣𝑣

=  𝑖𝑖𝑖𝑖𝑚𝑚𝑟𝑟 (6) 

 
For example, if you must go 120 miles and will be traveling at 60 miles/hour, you come up with a trip time 
of 2 hours.  Now consider the Hubble Law from Equation 1, but in a slightly rearranged form: 
 

 
𝑑𝑑
𝑣𝑣

=  
1
𝐻𝐻0

 (7) 

  
From comparison with Equation 6, you can see that the quantity 1/H0 (usually written as “H0

-1”) is 
analogous to the trip time.  What trip?  The trip that the galaxies have taken to reach their current 
distances, beginning at a time when all the matter in the universe was squashed together!  I.e., the current 
Age of the Universe.  Thus, we have: 
 
 𝑇𝑇ℎ𝑟𝑟 𝐴𝐴𝐴𝐴𝑟𝑟 𝑚𝑚𝑖𝑖 𝑖𝑖ℎ𝑟𝑟 𝑈𝑈𝑑𝑑𝑖𝑖𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≈ 𝐻𝐻0

−1 (7) 
 
Using the value of H0 you computed above (second line in Table 4) compute your estimate of the Age of 
the Universe in seconds and enter it in the third row of Table 4.  Convert the Age into units of years and 
enter in the last row or Table 4.  Be careful with significant figures!  
 
Equation 7 contains the “approximately equal to” sign (“≈”) because it depends on one key assumption; 
namely, that the expansion rate of the Universe has always been constant.  Likewise, our calculation of the 
time needed to drive 120 miles assumed that the speed would always be exactly 60 miles/hour.  It turns 
out that we now know that the expansion rate of the Universe has varied in the past, but the simple estimate 
of the Age you just made should be very close to the currently accepted value. 
 

Summary Question:  How well did you do?  Go to a web browser and look up the best 
current estimate of the age of the Universe.  E.g., type “Planck satellite age of universe” in 
your favorite search engine.  It should return the results from the recent Planck Satellite 
mission.  What is the currently accepted value?  What is your percent error? 

 
SOME USEFUL QUANTITIES 

Speed of light (c) 300,000 km/sec 

1 year  31,556,952 sec 

1 light year 9.46 x 1012 km 

1 parsec (pc) 3.26 light years 

1 megaparsec (Mpc) 1 x 106 pc 
1 megaparsec (Mpc) 
 
 

3.086 x 1019 km 
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Table 1:  Observational Data 

Object 
Number Name 

Integration 
time   
(sec) 

Signal 
to 

Noise 

Apparent 
Magnitude 

V 

K-line 
Wavelength 

(A) 

H-Line 
Wavelength 

(A) 
1       

2       

3       

4       

5       
 

Table 2:  Galaxy Velocities 

Object 
Number Name 

K-line 
Redshift 

(A) 

H-Line 
Redshift 

(A) 

K-Line 
Velocity 
(km/s) 

H-Line 
Velocity 
(km/s) 

Average 
Velocity 
(km/s) 

1       

2       

3       

4       

5       
 

Table 3:  Galaxy Distances 

Object 
Number Name 

Absolute 
Magnitude 

MV 
Distance 
Modulus 

Distance 
(pc) 

Distance 
(Mpc) 

1      

2      

3      

4      

5      
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Table 4:  Our Universe 

Hubble Constant H0   km/sec/Mpc 

Hubble Constant H0   sec-1 

Age of the Universe   sec 

Age of the Universe   years 
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Microsoft Excel Tutorial 
Creating a Linear  Graph with Regression 

 
 
 
This tutorial is designed to teach you how to create a graph and perform a linear regression using 
Microsoft Excel.  Excel is a spreadsheet program.  This is a program that is designed to take 
data, usually numerical, and perform various operations on it and output those results as numbers 
or graphs. While designed primarily for business applications, Excel can also be used for 
scientific work. The version shown in the pictures will be for Microsoft Office Excel 2013 for 
Windows. 

                 
 
 
Launch Microsoft Excel 2013 by selecting its icon. 
 
 
 
 

To begin the process of creating a graph, simply click the mouse in a cell and type the data into that cell.  
The data can be numbers, words, mathematical formulas, etc.  When done, click the mouse in another 
box and enter the data there.  In the example below, we've created two columns: Height and Weight 
(Height in column B, Weight in column C).  This data is from Lab A: Working with Numbers, Graphs, 
and the Computer.  When entering data, keep the first couple of rows available for column headings. 
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When you've entered all of your data, you can create a graph from it. To select the data that you want to 
graph, click and hold the left mouse button on the upper left cell, then drag the mouse to the lower right cell 
while holding the button down. The data will appear highlighted as seen below: 
 
 

 
 
 
NOTE:  To select two column which are not side-by-side, select the first column and then - while holding 
the CTRL button - select the second column. Both should now appear highlighted. Excel always chooses the 
leftmost column to be the x-axis of a graph. 
 
 
 
 
To add a graph to the spreadsheet, you can go 
to the Insert menu and then choose Scatter in 
the “Charts” section.  For the style of plot, 
click on the “Scatter with only Markers” 
type. 
 
This is the usual style of graph that we will 

use in this class. 
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Once your chart appears on the screen, you may want to make changes in how it is displayed or make 
corrections to your data points.  Here, it is necessary to set the range of both the x and y axis to see the data 
spread out on the page. To do this, click on the graph to highlight it and then select the large plus sign (“+”) 
to the right of the chart: 
 

 
 
 
This brings up a number of options which allow you to change the appearance of the chart.  To change the 
range of the graph, click the small arrow next to “Axes” in the “Chart Elements” box and then click “More 
Options”.  This brings up the “Format Axis” menu on the right side of the screen: 
 

 
 
 
 
There are many options available to you (which you will have to 
explore!)   To change the range displayed in the graph, highlight 
the axis you which to modify (i.e., click on it in the chart), then 
change the values listed in the “Bounds” section of the menu.  
You can also adjust the “Units” inputs to change the intervals 
between the tick marks displayed in the chart.  For your Height 
vs. Weight chart, try x-axis bounds of 55 and 80, with “Major” 
units set to 5.  Try y-axis bounds of 70 and 210, with “Major” 
units set to 10.  Experiment with these values.  The goal is for 
your data to fill the plotting area as much as possible, without 
wasting space (as in the default chart shown above, where the 
chart is blank for x-values less than 60 and y-values less than 
about 90. 
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It is now time to add axes labels and a chart title.  This is done via the “Chart Elements” box.  Simply check 
the “Axis Titles” and “Chart Title” boxes, and text boxes will appear on your chart in which you can type 
the desire titles and labels.  There are options for “prettifying” the titles, which can be accessed through the 
menus which will appear on the right side of the Excel window.  After typing in labels and a title, your 
chart should look something like: 
 

 
 
Make sure you enter a descriptive title.  It is IMPORTANT to include your name so you can identify your 
plot at the printer.  The axis labels should describe the quantity being displayed (e.g., “Weight”) and the 
units used. 
 
NOTE:  After creating a beautiful chart, you may discover that you have entered some of the data 
incorrectly in the spreadsheet.  No worries.  Simply change the incorrect value in the spreadsheet and the 
new results will appear automatically on the chart! 
 
 

TRENDLINES 
 
It is clear from viewing the data in the chart above that height and weight for college students appear to be, 
on average, linearly-related to each other.  I.e., as one increases, the other increases in the same proportion.  
This relationship can be quantified in Excel by fitting a “Trendline” to the data. 
 
To fit a Trendline to your data, simply check the “Trendline” box in the “Chart Elements” menu.  
(Remember?  Highlight the graph and click the “+” sign to bring up the “Chart Elements” box).  Clicking 
the small arrow next to “Trendline” will bring up the “Format Trendline” menu on the right side of the 
spreadsheet.  There are several options but, in this case, a linear fit seems appropriate.  Check the “Linear” 
option and Excel will perform a linear regression analysis on your data.  A line will appear through your 
data representing the mean relationship between height and weight of college students.  Check the “Display 
Equation on chart” box and the equation of this straight line will appear on the plot.  You can drag this 
equation around to a convenient spot and, also, change the text size and style. 
 
 
 

(Your name) 
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Your final graph will look something like this: 
 
 

 
 
 
 
 

PRINTING 
 
If you need to make a hardcopy of your graph, highlight the graph by clicking on it, then click on the “File” 
menu in the upper left corner of Excel and chose “Print” to get a view of the whole graph.  If it looks OK, 
then print it and include it with your lab.   
 
NOTE:  If you click “Print” in the “File” menu without highlighting the graph, the whole spreadsheet will 
be formatted for printing.  Printing this way allows you to include your data tables and charts on the same 
output page.  Elements in the spreadsheet can always be moved around to allow for maximum visibility on 
the printed output. 

(Your name) 
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Appendix 2 
 

Significant Digits 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Significant Digits in a Measurement 
 
 

Digits - 2 
 

Definition: 

Significant Digits –  All the digits in a numerical measurement that can be 
justified by the accuracy & precision of the measurement 
instrument. 

 
 
 
 The number of digits reported tells you something about the quality of the 

measurement: 

• Imagine four length measurements reported like this: 
 

1 meter 
1.0 meters 
1.00 meters 

1.0000 meters 
 

• These might seem to be the same but actually imply different levels of precision: 
o “1 meter” suggests a “ballpark measurement” 

 (could be off by a large fraction of a meter)   
o “1.0000 meters” indicates a very precise result 

(likely to be accurate to nearest millimeter) 
 

 How many digits should be reported: 
 
• It depends on the properties of the measurement instrument 
• The smallest allowable digit in a measurement is the “uncertain digit” or the “estimated 

digit.”  
• The “estimated digit” lies between the smallest intervals marked on the measurement 

device.  
 

 In the sample measurement shown on the next page, either 4.72 or 4.73 are acceptable 
answers for the length of the pencil.  It would not be appropriate to quote a 
measurement of 4.725. 
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http://chemsite.lsrhs.net/measurement/sig_fig.html 



Significant Digits in a Calculation 
 
 

Digits - 4 
 

The Big Idea: 
The number of significant digits in the answer to a calculation will depend on 
the number of significant digits in the original data. 

 
 
 
 How to Tell (or Indicate) Whether a Digit is Significant? 
 

• Non-zero digits are always significant. Thus:  
 

22 has two significant digits 
22.3 has three significant digits 

 
• With zeroes, the situation is more complicated: 
 

a. Zeroes placed before other digits are not significant; 0.046 has two significant digits. 
b. Zeroes placed between other digits are always significant; 4009 kg has four 

significant digits. 
c. Zeroes placed after other digits but behind a decimal point are significant;  7.90 has 

three significant digits. 
d. Zeroes at the end of a number are significant only if they are behind a decimal point 

as in (c). Otherwise, it is impossible to tell if they are significant. For example, in the 
number 8200, it is not clear if the zeroes are significant or not. The number of 
significant digits in 8200 is at least two but could be three or four.  

 
• In scientific notation, all written digits are assumed to be significant.  For example: 
  

8.200 x 103 has four significant digits 
8.20 x 103 has three significant digits 
8.2 x 103 has two significant digits 

 
• In logarithms (or astronomical magnitudes), only the numbers to the right of the decimal 

point are significant digits. 
 
For example , consider the number 476.2.  It has 4 significant digits.  The logarithm of 
476.2 should also be expressed using 4 significant digits and would be written as: 
 

log(476.2)  =  2.6778 
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 Significant Digits in Multiplication, Division & Trigonometric Functions 
 

In a calculation involving multiplication, division, and trigonometric functions, the number of 
significant digits in an answer should equal the least number of significant digits in any one of 
the numbers being multiplied, divided, etc. 
 

Thus, in evaluating sin(kx), where k = 0.097 m-1 (two significant digits) and x = 4.73 m 
(three significant digits), the answer should have two significant digits. 

 
Whole numbers have essentially an unlimited number of significant digits. As an example, if 
a hair dryer uses 1.2 kW of power, then 2 identical hairdryers use 2.4 kW: 
 

1.2 {2 sig. dig.} x 2 {unlimited sig. dig.} = 2.4 {2 sig. dig.} 
 
 Significant Digits in Addition and Subtraction 
 

When quantities are being added or subtracted, the number of decimal places (not significant 
digits) in the answer should be the same as the least number of decimal places in any of the 
numbers being added or subtracted.  For example: 

 
  5.67      (two decimal places) 
  1.1       (one decimal place)  
+ 0.9378    (four decimal place) 
  7.7       (one decimal place) 

 
 Keep Extra Digits in Intermediate Answers 
 

When doing multi-step calculations, keep at least one more significant digit in intermediate 
results than needed in your final answer. 
 

For instance, if a final answer requires two significant digits, then carry at least three 
significant digits in calculations. If you round-off all your intermediate answers to only 
two digits, you are discarding the information contained in the third digit, and as a result 
the second digit in your final answer might be incorrect. (This phenomenon is known as 
"round-off error.") 

 
 The Two Greatest Sins Regarding Significant Digits 
 

1. Writing more digits in an answer (intermediate or final) than justified by the number of 
digits in the data. 
 

2. Rounding-off, say, to two digits in an intermediate answer, and then writing three digits 
in the final answer. 

 
 

Source: http://www.physics.uoguelph.ca/tutorials/sig_fig/SIG_dig.htm 

source:%20http://www.physics.uoguelph.ca/tutorials/sig_fig/SIG_dig.htm
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