Fast Fourier Transform

12.0 Introduction

A very large class of important computational problems falls under the gen-
eral rubric of Fourier transform methods or spectral methods. For some of these
problems, the Fourier transform is simply an efficient computational tool for accom-
plishing certain common manipulations of data. In other cases, we have problems
for which the Fourier transform (or the related power spectrum) is itself of intrinsic
interest. These two kinds of problems share a common methodology.

Historically, Fourier and spectral methods have been considered a part of “sig-
nal processing,” rather than “numerical analysis” proper. There is really no justifi-
cation for such a distinction. Fourier methods are commonplace in research and we
will not treat them as specialized or arcane. However, we realize that many users
have had relatively less experience with this field than with, say, differential equa-
tions or numerical integration. Therefore our summary of analytical results will be
more complete. Numerical algorithms, per se, begin in §12.2. Various applications
of Fourier transform methods are discussed in Chapter 13.

A physical process can be described either in the time domain, by the values
of some quantity ~ as a function of time ¢, e.g., h(t), or else in the frequency do-
main, where the process is specified by giving its amplitude H (generally a complex
number indicating phase also) as a function of frequency f, that is, H(f), with
—00 < f < oo. For many purposes it is useful to think of /(¢) and H(f) as being
two different representations of the same function. One goes back and forth between
these two representations by means of the Fourier transform equations,

H(f) = [oo h(t)e*™ /" dr
—x (12.0.1)

wo = [T H(e g

If ¢ is measured in seconds, then f in equation (12.0.1) is in cycles per second,
or Hertz (the unit of frequency). However, the equations work with other units, too.
If & is a function of position x (in meters), H will be a function of inverse wavelength

600

12.0 Introduction 601

(cycles per meter), and so on. If you are trained as a physicist or mathematician, you
are probably more used to using angular frequency w, which is given in radians per
second. The relation between w and f, H(w) and H(f), is

o=2nf HW) =[H)fowr (12.0.2)

and equation (12.0.1) looks like this:

H(w) = /Oo h(t)e'®'dt
o (12.0.3)

1 o :
h(t) = —[H(w)e "'dw
27 J_ o

We were raised on the w-convention, but we changed! There are fewer factors of
27 to remember if you use the f-convention, especially when we get to discretely
sampled data in §12.1.

From equation (12.0.1) it is evident at once that Fourier transformation is a
linear operation. The transform of the sum of two functions is equal to the sum of
the transforms. The transform of a constant times a function is that same constant
times the transform of the function.

In the time domain, the function /(¢) may happen to have one or more spe-
cial symmetries. It might be purely real or purely imaginary or it might be even,
h(t) = h(—t), or odd, h(t) = —h(—t). In the frequency domain, these symme-
tries lead to relationships between H() and H(—). The following table gives the
correspondence between symmetries in the two domains:

If... then. ..

h(z) is real H(—f) =[H(/)]*

h(t) is imaginary H(—f)=—-[H()]*

h(t) is even H(—f)=H(f) [ie., H(f) iseven]
h(t) is odd H(—f)=—-H(f) [ie., H(f)isodd]
h(t) is real and even H(f) is real and even

h(t) is real and odd H(f) is imaginary and odd

h(t) is imaginary and even H(f) is imaginary and even
h(t) is imaginary and odd ~ H(f) is real and odd

In subsequent sections we shall see how to use these symmetries to increase compu-
tational efficiency.

Here are some other elementary properties of the Fourier transform. (We’ll use
the “<=" symbol to indicate transform pairs.) If

h(t) <= H(f) (12.0.4)

is such a pair, then other transform pairs are

602 Chapter 12. Fast Fourier Transform

1
h(at) < ﬂH(i) time scaling (12.0.5)
a a
1 t
mh(;) < H(bf) frequency scaling (12.0.6)
h(t — tg) < H(f) e*™/% time shifting (12.0.7)
h(t) e 2™/t — H(f — fo) frequency shifting (12.0.8)

With two functions /4(¢) and g(¢), and their corresponding Fourier transforms
H(f)and G(f), we can form two combinations of special interest. The convolution
of the two functions, denoted g * £, is defined by

o0

gxh= / gh(t—1)dr (12.0.9)
—00

Note that g * & is a function in the time domain and that g « &7 = h % g. It turns out

that the function g * & is one member of a simple transform pair,

gxh < G(f)H(f) convolution theorem (12.0.10)

In other words, the Fourier transform of the convolution is just the product of the
individual Fourier transforms.
The correlation of two functions, denoted Corr(g, /), is defined by

o0

Corr(g,h) = / gt +t)h(r)dr (12.0.11)

The correlation is a function of #, which is called the lag. It therefore lies in the time
domain, and it turns out to be one member of the transform pair:

Corr(g, h) <= G(f)H*(f) correlation theorem (12.0.12)

[More generally, the second member of the pair is G(f) H(— f'), but we are restrict-
ing ourselves to the usual case in which g and /4 are real functions, so we take the
liberty of setting H(— f) = H™*(f').] This result shows that multiplying the Fourier
transform of one function by the complex conjugate of the Fourier transform of the
other gives the Fourier transform of their correlation. The correlation of a function
with itself is called its autocorrelation. In this case (12.0.12) becomes the transform
pair
Corr(g, g) < |G(f)? Wiener-Khinchin theorem (12.0.13)
The total power in a signal is the same whether we compute it in the time
domain or in the frequency domain. This result is known as Parseval’s theorem:

total power = /Oo lh()|* dt = /Oo |H(f)|* df (12.0.14)

Frequently one wants to know “how much power” is contained in the frequency
interval between f and f 4+ df . In such circumstances, one does not usually distin-
guish between positive and negative f, but rather regards f as varying from 0 (“zero
frequency” or D.C.) to +00. In such cases, one defines the one-sided power spectral
density (PSD) of the function % as

Pu(f)=HHP+IH-IP 0= f<oo (12.0.15)

12.0 Introduction 603

[Aty |2

(a

=

Py(f) (one-sided)

(=)
~

(b

=

Pu(f)
(two-sided)

-f 0 f
(©)

Figure 12.0.1. Normalizations of one- and two-sided power spectra. The area under the square of the
function, (a), equals the area under its one-sided power spectrum at positive frequencies, (b), and also
equals the area under its two-sided power spectrum at positive and negative frequencies, (c).

so that the total power is just the integral of Py (f) from f = 0to f = co. When the
function (z) is real, the two terms in (12.0.15) are equal, so P,(f) = 2|H(f)[*.
Be warned that one occasionally sees PSDs defined without this factor two. These,
strictly speaking, are called two-sided power spectral densities, but some books are
not careful about stating whether one- or two-sided is to be assumed. We will always
use the one-sided density given by equation (12.0.15). Figure 12.0.1 contrasts the
two conventions.

If the function A(¢) goes endlessly from —oco < ¢ < oo, then its total power
and power spectral density will, in general, be infinite. Of interest then is the (one-
or two-sided) power spectral density per unit time. This is computed by taking a
long, but finite, stretch of the function /(z), computing its PSD [that is, the PSD
of a function that equals /4(¢) in the finite stretch but is zero everywhere else], and
then dividing the resulting PSD by the length of the stretch used. Parseval’s theorem
in this case states that the integral of the one-sided PSD-per-unit-time over positive
frequency is equal to the mean square amplitude of the signal /(¢).

You might well worry about how the PSD-per-unit-time, which is a function of
frequency f, converges as one evaluates it using longer and longer stretches of data.
This interesting question is the content of the subject of “power spectrum estimation”
and will be considered below in §13.4 — §13.7. A crude answer for now is, the
PSD-per-unit-time converges to finite values at all frequencies except those where
h(t) has a discrete sine-wave (or cosine-wave) component of finite amplitude. At

604 Chapter 12. Fast Fourier Transform

those frequencies, it becomes a delta-function, i.e., a sharp spike, whose width gets
narrower and narrower, but whose area converges to be the mean square amplitude
of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter, with one exception: In computational work, especially with experimental
data, we are almost never given a continuous function %(z) to work with, but are
given, rather, a list of measurements of 4 (¢;) for a discrete set of #;’s. The profound
implications of this seemingly trivial fact are the subject of §12.1.

12.0.1 Higher-Order Statistics

The Wiener-Khinchin theorem, equation (12.0.13), along with the definition
(12.0.11), shows that the power spectrum of a function is fully equivalent to the func-
tion’s two-point statistic, that is, the expectation value of the product of the function
at two different points separated by 7. One can correspondingly define higher-order
statistics in both the time and Fourier domains. For example, a function’s three-point
correlation is

e.¢]

Corr3(g, g.g) = / g@)gt+t1)g(t +1)dr (12.0.16)

—00

a function of the two variables #; and #,. The two-dimensional Fourier transform
(8§12.5) of equation (12.0.16) over ¢; and t, is called the bispectrum, a function of
two frequencies f1 and f5.

Higher-order statistics, including the bispectrum, can make visible non-Gaussian
and nonlinear phenomena to which two-point statistics (and thus power spectra) are
blind. However, they have the disadvantages of being often difficult to interpret and,
because of the high powers of the signal that enter, highly susceptible to noise. On
these grounds, we advise caution. Useful, if sometimes overly enthusiastic, refer-
ences are [1,2,3].

CITED REFERENCES AND FURTHER READING:

Bracewell, R.N. 1999, The Fourier Transform and Its Applications, 3rd ed. (New York: McGraw-
Hill)

Folland, G.B. 1992, Fourier Analysis and Its Applications (Pacific Grove, CA: Wadsworth &
Brooks).

James, J.F. 2002, A Student’s Guide to Fourier Transforms, 2nd ed. (Cambridge, UK: Cambridge
University Press)

Elliott, D.F.,, and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

Brillinger, D., and Rosenblatt, M. 1967, “Computation and Intepretation of kth Order Spectra,” in
B. Harris, ed., Spectral Analysis of Time Signals (New York: Wiley).[1]

Mendel, J.M. 1991, “Tutorial on Higher-Order Statistics (Spectra) in Signal Processing and Sys-
tem Theory: Theoretical Results and Some Applications,” Proceedings of the IEEE, vol. 79,
pp. 278-305.[2]

Nikias, C.L., and Petropulu, A.P. 1993, Higher-Order Spectra Analysis (New Jersey: Prentice-
Hall).[3]

12.1 Fourier Transform of Discretely Sampled Data 605

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function /(¢) is sampled (that is, its value is
recorded) at evenly spaced intervals in time. Let A denote the time interval between
consecutive samples, so that the sequence of sampled values is

By =h(nd) n=...,-3-2,-1012.3,... (12.1.1)

The reciprocal of the time interval A is called the sampling rate; if A is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

12.1.1 Sampling Theorem and Aliasing

For any sampling interval A, there is also a special frequency f., called the
Nyquist critical frequency, given by

Jfe= L (12.1.2)

2A

If a sine wave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at the
positive peak again, and so on. Expressed otherwise: Critical sampling of a sine
wave is two sample points per cycle. One frequently chooses to measure time in
units of the sampling interval A. In this case, the Nyquist critical frequency is just
the constant 1/2.

The Nyquist critical frequency is important for two related, but distinct, reasons.
One is good news, and the other bad news. First the good news. It is the remarkable
fact known as the sampling theorem: If a continuous function /(t), sampled at an
interval A, happens to be bandwidth limited to frequencies smaller in magnitude
than f., i.e., if H(f) = 0 for all | f| > f., then the function h(z) is completely
determined by its samples h,,. In fact, h(t) is given explicitly by the formula

= sin2r f (t —nA)]
h(t) = An;oohn s (12.1.3)
This is a remarkable theorem for many reasons, among them that it shows that the
“information content” of a bandwidth limited function is, in some sense, infinitely
smaller than that of a general continuous function. Fairly often, one is dealing with
a signal that is known on physical grounds to be bandwidth limited (or at least ap-
proximately bandwidth limited). For example, the signal may have passed through
a physical component with a known, finite frequency response. In this case, the
sampling theorem tells us that the entire information content of the signal can be
recorded by sampling it at a rate A~! equal to twice the maximum frequency passed
by the amplifier (cf. equation 12.1.2).

Now the bad news. The bad news concerns the effect of sampling a continu-
ous function that is not bandwidth limited to less than the Nyquist critical frequency.
In that case, it turns out that all of the power spectral density that lies outside of

606 Chapter 12. Fast Fourier Transform

h(r)
} \‘i/ =(_A%= \j p >
T

(@)

A

H(f)

(i) f

(b)

aliased Fourier transform

©

Figure 12.1.1. The continuous function shown in (a) is nonzero only for a finite interval of time 7. It
follows that its Fourier transform, whose modulus is shown schematically in (b), is not bandwidth limited
but has finite amplitude for all frequencies. If the original function is sampled with a sampling interval
A, as in (a), then the Fourier transform (c) is defined only between plus and minus the Nyquist critical
frequency. Power outside that range is folded over or “aliased” into the range. The effect can be eliminated
only by low-pass filtering the original function before sampling.

the frequency range — f. < f < f. is spuriously moved into that range. This
phenomenon is called aliasing. Any frequency component outside of the frequency
range (— f¢, f¢) is aliased (falsely translated) into that range by the very act of dis-
crete sampling. You can readily convince yourself that two waves exp(2mifit) and
exp(2mif,t) give the same samples at an interval A if and only if f; and f, differ by
amultiple of 1/A, which is just the width in frequency of the range (— f¢, f¢). There
is little that you can do to remove aliased power once you have discretely sampled
a signal. The way to overcome aliasing is to (i) know the natural bandwidth limit
of the signal — or else enforce a known limit by analog filtering of the continuous
signal, and then (ii) sample at a rate sufficiently rapid to give at least two points per
cycle of the highest frequency present. Figure 12.1.1 illustrates these considerations.

To put the best face on this, we can take the alternative point of view: If a
continuous function has been competently sampled, then, when we come to estimate
its Fourier transform from the discrete samples, we can assume (or rather we might as
well assume) that its Fourier transform is equal to zero outside of the frequency range

12.1 Fourier Transform of Discretely Sampled Data 607

in between — f, and f,. Then we look to the Fourier transform to tell whether the
continuous function has been competently sampled (aliasing effects minimized). We
do this by looking to see whether the Fourier transform is already approaching zero
as the frequency approaches f. from below or — f. from above. If, on the contrary,
the transform is going toward some finite value, then chances are that components
outside of the range have been folded back over onto the critical range.

12.1.2 Discrete Fourier Transform

We now estimate the Fourier transform of a function from a finite number of its
sampled points. Suppose that we have N consecutive sampled values,

hi = h(ty), I = kA, k=0,1,2,...,N—1 (12.1.4)

so that the sampling interval is A. To make things simpler, let us also suppose that
N is even. If the function /(¢) is nonzero only in a finite interval of time, then
that whole interval of time is supposed to be contained in the range of the N points
given. Alternatively, if the function /() goes on forever, then the sampled points are
supposed to be at least “typical” of what /(¢) looks like at all other times.

With N numbers of input, we will evidently be able to produce no more than
N independent numbers of output. So, instead of trying to estimate the Fourier
transform H(f') at all values of f in the range — f; to f¢, let us seek estimates only
at the discrete values

n N N

fn_NA’ n=—sn g (12.1.5)

The extreme values of n in (12.1.5) correspond exactly to the lower and upper limits

of the Nyquist critical frequency range. If you are really on the ball, you will have

noticed that there are N + 1, not N, values of n in (12.1.5); it will turn out that the

two extreme values of n are not independent (in fact they are equal), but all the others
are. This reduces the count to N.

The remaining step is to approximate the integral in (12.0.1) by a discrete sum:

H(fy) = / /’l(l)eznlf"tdt ~ Z i 2Ttk A — A Z Iy p2mikn/N
- k=0 k=0

(12.1.6)
Here equations (12.1.4) and (12.1.5) have been used in the final equality. The final
summation in equation (12.1.6) is called the discrete Fourier transform of the N
points /. Let us denote it by H,,,

N-—1
H, = Z hy e2Tikn/N (12.1.7)
k=0

The discrete Fourier transform maps N complex numbers (the /1 ’s) into N complex
numbers (the H,’s). It does not depend on any dimensional parameter, such as the
time scale A. The relation (12.1.6) between the discrete Fourier transform of a set of
numbers and their continuous Fourier transform when they are viewed as samples of
a continuous function sampled at an interval A can be rewritten as

H(fn) ~ AHy (12.1.8)

608 Chapter 12. Fast Fourier Transform

where f,, is given by (12.1.5).

Up to now we have taken the view that the index 7 in (12.1.7) varies from —N /2
to N/2 (cf. 12.1.5). You can easily see, however, that (12.1.7) is periodic in n, with
period N. Therefore, H_, = Hy—,, n = 1,2,.... With this conversion in mind,
one generally lets the n in H, vary from 0 to N — 1 (one complete period). Then
n and k (in hg) vary exactly over the same range, so the mapping of N numbers
into N numbers is manifest. When this convention is followed, you must remember
that zero frequency corresponds to n = 0 and positive frequencies 0 < f < fe
correspond to values 1 < n < N/2 — 1, while negative frequencies — f, < f < 0
correspond to N/2 +1 < n < N — 1. The value n = N/2 corresponds to both
f=Jfeand [=—f.

The discrete Fourier transform has symmetry properties almost exactly the same
as the continuous Fourier transform. For example, all the symmetries in the table
following equation (12.0.3) hold if we read hy for h(t), H, for H(f), and Hy_p
for H(—f). (Likewise, “even” and “odd” in time refer to whether the values A at k
and N — k are identical or the negative of each other.)

The formula for the discrete inverse Fourier transform, which recovers the set
of hy’s exactly from the H),’s is

N-—1
1 —2mikn/N
hy = < ’; H, e 27ikn (12.1.9)

Notice that the only differences between (12.1.9) and (12.1.7) are (i) changing the
sign in the exponential, and (ii) dividing the answer by N. This means that a rou-
tine for calculating discrete Fourier transforms can also, with slight modification,
calculate the inverse transforms.

The discrete form of Parseval’s theorem is

N-1 1 N-—1
D el == > | Hal (12.1.10)
k=0 n=0

There are also discrete analogs to the convolution and correlation theorems (equa-
tions 12.0.10 and 12.0.12), but we shall defer them to §13.1 and §13.2, respectively.

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

James, J.F. 2002, A Student’s Guide to Fourier Transforms, 2nd ed. (Cambridge, UK: Cambridge
University Press)

Elliott, D.F.,, and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer was
this: Define W as the complex number

W = e2mi/N (12.2.1)

12.2 Fast Fourier Transform (FFT) 609

Then (12.1.7) can be written as
N-1
Hy =Y " W (12.2.2)
k=0

In other words, the vector of A ’s is multiplied by a matrix whose (7, k)th element
is the constant W to the power n x k. The matrix multiplication produces a vector
result whose components are the H,’s. This matrix multiplication evidently requires
N2 complex multiplications, plus a smaller number of operations to generate the re-
quired powers of W . So, the discrete Fourier transform appears to be an O (N 2) pro-
cess. These appearances are deceiving! The discrete Fourier transform can, in fact,
be computed in O(N log, N) operations with an algorithm called the fast Fourier
transform, or FFT. The difference between N log, N and N? is immense. With
N = 108, for example, it is a factor of several million, comparable to the ratio
of one second to one month. The existence of an FFT algorithm became generally
known only in the mid-1960s, from the work of J.W. Cooley and J.W. Tukey. Ret-
rospectively, we now know (see [1]) that efficient methods for computing the DFT
had been independently discovered, and in some cases implemented, by as many as
a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed that
a discrete Fourier transform of length N can be rewritten as the sum of two discrete
Fourier transforms, each of length N/2. One of the two is formed from the even-
numbered points of the original N, the other from the odd-numbered points. The
proof is simply this:

N-1
F = Z o2 UKIN g

j=0
N/2—1 N/2—1

_ Z eZnik(Zj)/Nf2j+ Z €2nik(2j+1)/Nf2j+l
j=0 j=o (122.3)
N/2—1 N/2—-1

— Z ez:zikj/(N/z)fzj +Wk Z 6,27rikj/(N/2)f2j_i_1
Jj=0 Jj=0

= FE+WE R

In the last line, W' is the same complex constant as in (12.2.1), F denotes the kth
component of the Fourier transform of length N /2 formed from the even components
of the original f;’s, while F is the corresponding transform of length N/2 formed
from the odd components. Notice also that k in the last line of (12.2.3) varies from
0 to N, not just to N/2. Nevertheless, the transforms F; and F)} are periodic in k
with length N/2. So each is repeated through two cycles to obtain Fy.

The wonderful thing about the Danielson-Lanczos lemma is that it can be used
recursively. Having reduced the problem of computing Fj to that of computing
F¢ and F, we can do the same reduction of Fy to the problem of computing the
transform of its N/4 even-numbered input data and N/4 odd-numbered data. In
other words, we can define F’ kee and F ,f” to be the discrete Fourier transforms of the

610 Chapter 12. Fast Fourier Transform

points that are respectively even-even and even-odd on the successive subdivisions
of the data.

Although there are ways of treating other cases, by far the easiest case is the
one in which the original N is an integer power of 2. In fact, we categorically
recommend that you only use FFTs with N a power of 2. If the length of your data
set is not a power of 2, pad it with zeros up to the next power of 2. (We will give
more sophisticated suggestions in subsequent sections below.) With this restriction
on N, itis evident that we can continue applying the Danielson-Lanczos lemma until
we have subdivided the data all the way down to transforms of length one. What is
the Fourier transform of length one? It is just the identity operation that copies its
one input number into its one output slot! In other words, for every pattern of log, N
e’s and o’s, there is a one-point transform that is just one of the input numbers f;,,

Foeeoeooee — f for some n (12.2.4)

(Of course this one-point transform actually does not depend on &, since it is periodic
in k with period 1.)

The next trick is to figure out which value of n corresponds to which pattern
of e’s and o’s in equation (12.2.4). The answer is: Reverse the pattern of e’s and
0’s, then let ¢ = 0 and 0 = 1, and you will have, in binary, the value of n. Do
you see why it works? It is because the successive subdivisions of the data into even
and odd are tests of successive low-order (least significant) bits of n. This idea of
bit reversal can be exploited in a very clever way that, along with the Danielson-
Lanczos lemma, makes FFTs practical: Suppose we take the original vector of data
J; and rearrange it into bit-reversed order (see Figure 12.2.1), so that the individual
numbers are in the order not of j, but of the number obtained by bit reversing ;.
Then the bookkeeping on the recursive application of the Danielson-Lanczos lemma
becomes extraordinarily simple. The points as given are the one-point transforms.
We combine adjacent pairs to get two-point transforms, then combine adjacent pairs
of pairs to get four-point transforms, and so on, until the first and second halves of
the whole data set are combined into the final transform. Each combination takes
of order N operations, and there are evidently log, N combinations, so the whole
algorithm is of order N log, N (assuming, as is the case, that the process of sorting
into bit-reversed order is no greater in order than N log, N).

This, then, is the structure of an FFT algorithm: It has two sections. The first
section sorts the data into bit-reversed order. Luckily this takes no additional stor-
age, since it involves only swapping pairs of elements. (If k; is the bit reverse of k»,
then k, is the bit reverse of k1.) The second section has an outer loop that is exe-
cuted log, N times and calculates, in turn, transforms of length 2,4, 8, ..., N. This
series of operations is often called a butterfly. For each stage of the process, two
nested inner loops range over the subtransforms already computed and the elements
of each transform, implementing the Danielson-Lanczos lemma. The operation is
made more efficient by restricting external calls for trigonometric sines and cosines
to the outer loop, where they are made only log, N times. Computation of the sines
and cosines of multiple angles is through simple recurrence relations in the inner
loops (cf. 5.4.6).

12.2 Fast Fourier Transform (FFT) 611

000 > 000 000
001 001 001
010 \ /: 010 010
011 011 011
100 100 100
101 > 101 101
110 / \ 110 110
111 > 111 111
(a) (b)

Figure 12.2.1. Reordering an array (here of length 8) by bit reversal, (a) between two arrays, versus (b)
in place. Bit-reversal reordering is a necessary part of the fast Fourier transform (FFT) algorithm.

12.2.1 Bare FFT Routine and Helper Interfaces

Experience convinces us that a good way to package the FFT is as (i) a bare rou-
tine with a minimal interface, plus also (ii) a small set of interface objects that make it
easier to get data in and out of the bare routine. The bare FFT routine given below is
based on one originally written by N.M. Brenner. The input quantities are the number
of complex data points n (=N), a pointer to the data array (data[0. .2*n-1]), and
isign, which is set to either +1 and is the sign of i in the exponential of equation
(12.1.7). When isign is set to —1, the routine thus calculates the inverse transform
(12.1.9) — except that it does not multiply by the normalizing factor 1/N that ap-
pears in that equation. You do that yourself. We test to be sure that n is a power of 2
by the C++ idiom n& (n-1), which is zero only if n is, in binary, 1 followed by any
number of zeros.

Notice that the argument n is the number of complex data points. The actual
length of the Doub array (data[0..2*n-1]) is 2n, with each complex value occu-
pying two consecutive locations. In other words, data[0] is the real part of fy,
datal1] is the imaginary part of fg, and so on up to data[2*n-2], which is the
real part of fy_1, and data[2*n-1], which is the imaginary part of fy_;.

The FFT routine gives back the F},’s packed in exactly the same fashion, as n
complex numbers. The real and imaginary parts of the zero frequency component Fj
are in data[0] and data[1]; the smallest nonzero positive frequency has real and
imaginary parts in data[2] and data[3]; the smallest (in magnitude) nonzero neg-
ative frequency has real and imaginary parts in data[2*n-2] and data[2*n-1].
Positive frequencies increasing in magnitude are stored in the real-imaginary pairs
data[4], data[5] up to data[n-2], data[n-1]. Negative frequencies of in-
creasing magnitude are stored in data [2*n-4], data[2*n-3] down to data[n+2],
data[n+3]. Finally, the pair data[n], data[n+1] contains the real and imaginary
parts of the one aliased point that contains the most positive and the most negative
frequencies. You should try to develop a familiarity with this storage arrangement of

Fourier and Spectral
Applications

13.0 Introduction

Fourier methods have revolutionized fields of science and engineering, from
astronomy to medical imaging, from seismology to spectroscopy. In this chapter,
we present some of the basic applications of Fourier and spectral methods that have
made these revolutions possible.

Say the word “Fourier” to a numericist, and the response, as if by Pavlovian
conditioning, will likely be “FFT.” Indeed, the wide application of Fourier methods
must be credited principally to the existence of the fast Fourier transform. Better
mousetraps move over: If you speed up any nontrivial algorithm by a factor of a
million or so, the world will beat a path toward finding useful applications for it.
The most direct applications of the FFT are to the convolution or deconvolution of
data (§13.1), correlation and autocorrelation (§13.2), optimal filtering (§13.3), power
spectrum estimation (§13.4), and the computation of Fourier integrals (§13.9).

As important as they are, however, FFT methods are not the be-all and end-all of
spectral analysis. Section 13.5 is a brief introduction to the field of time-domain digi-
tal filters. In the spectral domain, one limitation of the FFT is that it always represents
a function’s Fourier transform as a polynomial in z = exp(2wifA) (cf. equation
12.1.7). Sometimes, processes have spectra whose shapes are not well represented
by this form. An alternative form, which allows the spectrum to have poles in z, is
used in the techniques of linear prediction (§13.6) and maximum entropy spectral
estimation (§13.7).

Another significant limitation of all FFT methods is that they require the in-
put data to be sampled at evenly spaced intervals. For irregularly or incompletely
sampled data, other (albeit slower) methods are available, as discussed in §13.8.

So-called wavelet methods inhabit a representation of function space that is
neither in the temporal nor in the spectral domain, but rather somewhere in-between.
Section 13.10 is an introduction to this subject. Finally, §13.11 is an excursion into
the numerical use of the Fourier sampling theorem.

640

13.1 Convolution and Deconvolution Using the FFT 641

oL

VAN

r*s(t) m

N t

Figure 13.1.1. Example of the convolution of two functions. A signal s(¢) is convolved with a response
function r(¢). Since the response function is broader than some features in the original signal, these are
“washed out” in the convolution. In the absence of any additional noise, the process can be reversed by
deconvolution.

13.1 Convolution and Deconvolution
Using the FFT

We have defined the convolution of two functions for the continuous case in
equation (12.0.9), and have given the convolution theorem as equation (12.0.10).
The theorem says that the Fourier transform of the convolution of two functions is
equal to the product of their individual Fourier transforms. Now, we want to deal
with the discrete case. We will mention first the context in which convolution is a
useful procedure, and then discuss how to compute it efficiently using the FFT.

The convolution of two functions 7 (¢) and s(¢), denoted r * s, is mathemati-
cally equal to their convolution in the opposite order, s * r. Nevertheless, in most
applications the two functions have quite different meanings and characters. One of
the functions, say s, is typically a signal or data stream, which goes on indefinitely in
time (or in whatever the appropriate independent variable may be). The other func-
tion r is a “response function,” typically a peaked function that falls to zero in both
directions from its maximum. The effect of convolution is to smear the signal s(¢)
in time according to the recipe provided by the response function r(¢), as shown in
Figure 13.1.1. In particular, a spike or delta-function of unit area in s which occurs
at some time ¢ is supposed to be smeared into the shape of the response function
itself, but translated from time O to time 7y as r (¢ — 7g).

In the discrete case, the signal s() is represented by its sampled values at equal
time intervals s;. The response function is also a discrete set of numbers ry, with the
following interpretation: r¢ tells what multiple of the input signal in one channel (one
particular value of j) is copied into the identical output channel (same value of j);
ry tells what multiple of input signal in channel j is additionally copied into output
channel j + 1; r—; tells the multiple that is copied into channel j — 1; and so on for
both positive and negative values of k in rg. Figure 13.1.2 illustrates the situation.

642 Chapter 13. Fourier and Spectral Applications

Jrrrr, .,

0 N-1

Vi '

(V*S)j -1

1]11 IIH‘IIH
| ¢ '

Figure 13.1.2. Convolution of discretely sampled functions. Note how the response function for negative
times is wrapped around and stored at the extreme right end of the array 7.

Example: A response function with ro = 1 and all other r¢’s equal to zero
is just the identity filter. Convolution of a signal with this response function gives
identically the signal. Another example is the response function with r14 = 1.5 and
all other ry’s equal to zero. This produces convolved output that is the input signal
multiplied by 1.5 and delayed by 14 sample intervals.

Evidently, we have just described in words the following definition of discrete
convolution with a response function of finite duration M:

M/2

(res);= Y. Sjixr (13.1.1)

k=—M/2+1

If a discrete response function is nonzero only in some range —M/2 < k < M/2,
where M is a sufficiently large even integer, then the response function is called a
finite impulse response (FIR), and its duration is M . (Notice that we are defining M
as the number of nonzero values of ry; these values span a time interval of M — 1
sampling times.) In most practical circumstances the case of finite M is the case of
interest, either because the response really has a finite duration, or because we choose
to truncate it at some point and approximate it by a finite-duration response function.

The discrete convolution theorem 1is this: If a signal s; is periodic with period
N, so that it is completely determined by the N values s, ..., Sy—1, then its discrete
convolution with a response function of finite duration N is a member of the discrete
Fourier transform pair,

13.1 Convolution and Deconvolution Using the FFT 643

N/2
Yo sikrne &= SuRy (13.1.2)
k=—N/2+1
Here S, (n =0,..., N — 1) is the discrete Fourier transform of the values s; (j =
0,...,N —1), while R, (n = 0,..., N — 1) is the discrete Fourier transform of
the values ry (k = 0,..., N — 1). These values of r; are the same as for the range

k=—-N/2+1,...,N/2, but in wraparound order, exactly as was described at the
end of §12.2.

13.1.1 Treatment of End Effects by Zero Padding

The discrete convolution theorem presumes a set of two circumstances that are
not universal. First, it assumes that the input signal is periodic, whereas real data
often either go forever without repetition or else consist of one nonperiodic stretch
of finite length. Second, the convolution theorem takes the duration of the response
to be the same as the period of the data; they are both N. We need to work around
these two constraints.

The second is very straightforward. Almost always, one is interested in a
response function whose duration M is much shorter than the length of the data set
N. In this case, you simply extend the response function to length N by padding
it with zeros, i.e., define rp = 0 for M/2 < k < N/2 and also for —N/2 +
1 << —M/2 + 1. Dealing with the first constraint is more challenging. Since
the convolution theorem rashly assumes that the data are periodic, it will falsely
“pollute” the first output channel (r * s)¢ with some wrapped-around data from the
far end of the data stream sy—1, Sy—2, etc. (See Figure 13.1.3.) So, we need to set
up a buffer zone of zero-padded values at the end of the s; vector, in order to make
this pollution zero. How many zero values do we need in this buffer? Exactly as
many as the most negative index for which the response function is nonzero. For
example, if r_3 is nonzero while r_4, r_s, ... are all zero, then we need three zero
pads at the end of the data: sy_3 = sy—» = sy—1 = 0. These zeros will protect the
first output channel (7 * s)¢ from wraparound pollution. It should be obvious that the
second output channel (r * s); and subsequent ones will also be protected by these
same zeros. Let K denote the number of padding zeros, so that the last actual input
data point is Sy —g—1.

What now about pollution of the very last output channel? Since the data now
end with sy_g—_1, the last output channel of interest is (r * 5) y—g—1. This channel
can be polluted by wraparound from input channel so unless the number K is also
large enough to take care of the most positive index k for which the response function
rx is nonzero. For example, if ro through rg are nonzero, while r7, rg . . . are all zero,
then we need at least K = 6 padding zeros at the end of the data: sy_¢ = ... =
SN—1 = 0.

To summarize — we need to pad the data with a number of zeros on one end
equal to the maximum positive duration or maximum negative duration of the re-
sponse function, whichever is larger. (For a symmetric response function of duration
M, you will need only M/2 zero pads.) Combining this operation with the padding
of the response ry described above, we effectively insulate the data from artifacts of
undesired periodicity. Figure 13.1.4 illustrates matters.

644 Chapter 13. Fourier and Spectral Applications

—————————Tesponse function V
1 I

my—> — m_—>

-

-\ | s’ample of orig‘inal fllnction
S \/

convolution |

spoiled «<————unspoiled ————— spoiled ‘

Figure 13.1.3. The wraparound problem in convolving finite segments of a function. Not only must
the response function wrap be viewed as cyclic, but so must the sampled original function. Therefore,
a portion at each end of the original function is erroneously wrapped around by convolution with the
response function.

‘-\/— response function V
my—>

—M_——->

original function zero paddin ‘
I | /\ \VI l - -

—M_— <« my

not spoiled because zero

m_

< My —>
I

«———unspoiled

spoiled ——
but irrelevant

Figure 13.1.4. Zero-padding as solution to the wraparound problem. The original function is extended
by zeros, serving a dual purpose: When the zeros wrap around, they do not disturb the true convolution;
and while the original function wraps around onto the zero region, that region can be discarded.

13.1 Convolution and Deconvolution Using the FFT 645

13.1.2 Use of FFT for Convolution

The data, complete with zero-padding, are now a set of real numbers s;, j =
0,..., N — 1, and the response function is zero-padded out to duration N and ar-
ranged in wraparound order. (Generally this means that a large contiguous section
of the ry’s, in the middle of that array, is zero, with nonzero values clustered at the
two extreme ends of the array.) You now compute the discrete convolution as fol-
lows: Use the FFT algorithm to compute the discrete Fourier transform of s and of r.
Multiply the two transforms together component-by-component, remembering that
the transforms consist of complex numbers. Then use the FFT algorithm to take the
inverse discrete Fourier transform of the products. The answer is the convolution
FoxS.

What about deconvolution? Deconvolution is the process of undoing the smear-
ing in a data set that has occurred under the influence of a known response function,
for example, because of the known effect of a less-than-perfect measuring apparatus.
The defining equation of deconvolution is the same as that for convolution, namely
(13.1.1), except now the left-hand side is taken to be known and (13.1.1) is to be
considered as a set of N linear equations for the unknown quantities s;. Solving
these simultaneous linear equations in the time domain of (13.1.1) is unrealistic in
most cases, but the FFT renders the problem almost trivial. Instead of multiplying
the transform of the signal and response to get the transform of the convolution, we
just divide the transform of the (known) convolution by the transform of the response
to get the transform of the deconvolved signal.

This procedure can go wrong mathematically if the transform of the response
function is exactly zero for some value R, so that we can’t divide by it. This indi-
cates that the original convolution has truly lost all information at that one frequency,
so that a reconstruction of that frequency component is not possible. You should be
aware, however, that apart from mathematical problems, the process of deconvolu-
tion has other practical shortcomings. The process is generally quite sensitive to
noise in the input data, and to the accuracy to which the response function ry is
known. Perfectly reasonable attempts at deconvolution can sometimes produce non-
sense for these reasons. In such cases you may want to make use of the additional
process of optimal filtering, which is discussed in §13.3.

Here is our routine for convolution and deconvolution, using the FFT as imple-
mented in realft (§12.3). The data are assumed to be stored in a VecDoub array
datal[0..n-1], with n an integer power of 2. The response function is assumed to
be stored in wraparound order in a VecDoub array respns [0. .m-1]. The value of m
can be any odd integer less than or equal to n, since the first thing the program does
is to recopy the response function into the appropriate wraparound order in an array
of length n. The answer is provided in ans, which is also used as working space.

void convlv(VecDoub_I &data, VecDoub_I &respns, const Int isign,

VecDoub_0 &ans) {
Convolves or deconvolves a real data set datal0..n-1] (including any user-supplied zero
padding) with a response function respns[0..m-1], where m is an odd integer < n. The
response function must be stored in wraparound order: The first half of the array respns
contains the impulse response function at positive times, while the second half of the array
contains the impulse response function at negative times, counting down from the highest ele-
ment respns[m-1]. On input isign is +1 for convolution, —1 for deconvolution. The answer
is returned in ans[0..n-1]. n must be an integer power of 2.

Int i,no2,n=data.size() ,m=respns.size();

convliv.h

646 Chapter 13. Fourier and Spectral Applications

Doub mag2,tmp;

VecDoub temp(n);

temp [0]=respns[0];

for (i=1;i<(m+1)/2;i++) { Put respns in array of length n.
temp[i]=respns[i];
temp [n-i]=respns[m-i];

}

for (i=(m+1)/2;i<n-(m-1)/2;i++) Pad with zeros.
temp[i]=0.0;

for (i=0;i<n;i++)
ans[i]=datal[i];

realft(ans,1); FFT both arrays.
realft(temp,1);
no2=n>>1;
if (isign == 1) {
for (i=2;i<n;i+=2) { Multiply FFTs to convolve.

tmp=ans[i];
ans[i]=(ans[i]*temp[i]-ans[i+1]*temp[i+1]) /no2;
ans[i+1]=(ans[i+1]*temp[i]+tmp*temp[i+1])/no2;
}
ans[0] =ans [0] *temp [0] /no2;
ans[1]=ans[1]*temp[1]/no2;
} else if (isign == -1) {
for (i=2;i<n;i+=2) { Divide FFTs to deconvolve.
if ((mag2=SQR(temp[i])+SQR(temp[i+1])) == 0.0)
throw("Deconvolving at response zero in convlv");
tmp=ans[i];
ans[il=(ans[i]*temp[i]+ans[i+1]*temp[i+1])/mag2/no2;
ans[i+1]=(ans[i+1]*temp[i]-tmp*temp[i+1])/mag2/no2;
}
if (temp[0] == 0.0 || temp[1] == 0.0)
throw("Deconvolving at response zero in convlv");
ans [0]=ans [0]/temp[0] /no2;
ans[1]=ans[1]/temp[1]/no2;
} else throw("No meaning for isign in convlv");
realft(ans,-1); Inverse transform back to time domain.

13.1.3 Convolving or Deconvolving Very Large Data Sets

If your data set is so long that you do not want to fit it into memory all at
once, then you must break it up into sections and convolve each section separately.
Now, however, the treatment of end effects is a bit different. You have to worry
not only about spurious wraparound effects, but also about the fact that the ends of
each section of data should have been influenced by data at the nearby ends of the
immediately preceding and following sections of data, but were not so influenced
since only one section of data is in the machine at a time.

There are two, related, standard solutions to this problem. Both are fairly obvi-
ous, so with a few words of description here, you ought to be able to implement them
for yourself. The first solution is called the overlap-save method. In this technique
you pad only the very beginning of the data with enough zeros to avoid wraparound
pollution. After this initial padding, you forget about zero-padding altogether. Bring
in a section of data and convolve or deconvolve it. Then throw out the points at each
end that are polluted by wraparound end effects. Output only the remaining good
points in the middle. Now bring in the next section of data, but not all new data. The
first points in each new section overlap the last points from the preceding section of
data. The sections must be overlapped sufficiently so that the polluted output points

13.1 Convolution and Deconvolution Using the FFT 647

:wﬂm

Q<

S« — — — |

e — — — — — — — —|n

€« ———————————n

C
|
|
| | | B : B+C : v ¢ Iconvolution (out)

Figure 13.1.5. The overlap-add method for convolving a response with a very long signal. The signal
data are broken up into smaller pieces. Each is zero-padded at both ends and convolved (denoted by bold
arrows in the figure). Finally the pieces are added back together, including the overlapping regions formed
by the zero-pads.

at the end of one section are recomputed as the first of the unpolluted output points
from the subsequent section. With a bit of thought you can easily determine how
many points to overlap and save.

The second solution, called the overlap-add method, is illustrated in Figure
13.1.5. Here you don’t overlap the input data. Each section of data is disjoint from
the others and is used exactly once. However, you carefully zero-pad it at both ends
so that there is no wraparound ambiguity in the output convolution or deconvolution.
Now you overlap and add these sections of output. Thus, an output point near the
end of one section will have the response due to the input points at the beginning of
the next section of data properly added in to it, and likewise for an output point near
the beginning of a section, mutatis mutandis.

Even when computer memory is available, there is some slight gain in comput-
ing speed in segmenting a long data set, since the FFTs’ N log, N is slightly slower
than linear in N. However, the log term is so slowly varying that you will often be
much happier to avoid the bookkeeping complexities of the overlap-add or overlap-
save methods: If it is practical to do so, just cram the whole data set into memory
and FFT away. Then you will have more time for the finer things in life, some of
which are described in succeeding sections of this chapter.

CITED REFERENCES AND FURTHER READING:
Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), Chap-
ter 183.

648 Chapter 13. Fourier and Spectral Applications

13.2 Correlation and Autocorrelation
Using the FFT

Correlation is the close mathematical cousin of convolution. It is in some ways
simpler, however, because the two functions that go into a correlation are not as
conceptually distinct as were the data and response functions that entered into con-
volution. Rather, in correlation, the functions are represented by different, but gen-
erally similar, data sets. We investigate their “correlation,” by comparing them both
directly superposed, and with one of them shifted left or right.

We have already defined in equation (12.0.11) the correlation between two con-
tinuous functions g(¢) and A(¢), which is denoted Corr(g,), and is a function of
lag t. We will occasionally show this time dependence explicitly, with the rather
awkward notation Corr(g, /)(¢). The correlation will be large at some value of ¢ if
the first function (g) is a close copy of the second (/) but lags it in time by ¢, i.e., if
the first function is shifted to the right of the second. Likewise, the correlation will
be large for some negative value of ¢ if the first function leads the second, i.e., is
shifted to the left of the second. The relation that holds when the two functions are
interchanged is

Corr(g, h)(t) = Corr(h, g)(—t) (13.2.1)

The discrete correlation of two sampled functions g and hy, each periodic with
period N, is defined by

N-1

Corr(g,h); =) gj+ihx (13.2.2)
k=0

The discrete correlation theorem says that this discrete correlation of two real func-
tions g and / is one member of the discrete Fourier transform pair

Corr(g,h); <= Gy H} (13.2.3)

where Gy and Hy are the discrete Fourier transforms of g; and /;, and the asterisk
denotes complex conjugation. This theorem makes the same presumptions about the
functions as those encountered for the discrete convolution theorem.

We can compute correlations using the FFT as follows: FFT the two data sets,
multiply one resulting transform by the complex conjugate of the other, and inverse
transform the product. The result (call it rg) will formally be a complex vector
of length N. However, it will turn out to have all its imaginary parts zero since
the original data sets were both real. The components of r; are the values of the
correlation at different lags, with positive and negative lags stored in the by-now
familiar wraparound order: The correlation at zero lag is in rg, the first component;
the correlation at lag 1 is in r1, the second component; the correlation at lag —1 is in
ry—1, the last component; etc.

Just as in the case of convolution we have to consider end effects, since our data
will not, in general, be periodic as intended by the correlation theorem. Here again,
we can use zero-padding. If you are interested in the correlation for lags as large as
£ K, then you must append a buffer zone of K zeros at the end of both input data
sets. If you want all possible lags from N data points (not a usual thing), then you
will need to pad the data with an equal number of zeros; this is the extreme case. So
here is the program:

13.3 Optimal (Wiener) Filtering with the FFT 649

void correl(VecDoub_I &datal, VecDoub_I &data2, VecDoub_0 &ans) {
Computes the correlation of two real data sets datal[0..n-1] and data2[0..n-1] (including
any user-supplied zero padding). n must be an integer power of 2. The answer is returned in
ans[0..n-1] stored in wraparound order, i.e., correlations at increasingly negative lags are in
ans[n-1] on down to ans[n/2], while correlations at increasingly positive lags are in ans[0]
(zero lag) on up to ans[n/2-1]. Sign convention of this routine: if datal lags data2, i.e., is
shifted to the right of it, then ans will show a peak at positive lags.
Int no2,i,n=datal.size();
Doub tmp;
VecDoub temp(n);
for (i=0;i<n;i++) {
ans[i]l=datall[i]l;
temp[i]=data2[i];

}

realft(ans,1); Transform both data vectors.

realft(temp,1);

no2=n>>1; Normalization for inverse FFT.

for (i=2;i<n;i+=2) { Multiply to find FFT of their correlation.
tmp=ans[i];
ans[i]=(ans[i]*temp[i]+ans[i+1]*temp[i+1])/no2;
ans[i+1]=(ans[i+1]*temp[i] -tmp*temp[i+1])/no2;

}

ans [0]=ans [0] *temp [0] /no2;
ans[1]=ans[1]*temp[1]/no2;
realft(ans,-1); Inverse transform gives correlation.

The discrete autocorrelation of a sampled function g; is just the discrete cor-
relation of the function with itself. Obviously this is always symmetric with respect
to positive and negative lags. Feel free to use the above routine correl to obtain
autocorrelations, simply calling it with the same data vector in both arguments. If
the inefficiency bothers you, you can edit the program so that only one call is made
to realft for the forward transform.

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §13-2.

13.3 Optimal (Wiener) Filtering with the FFT

There are a number of other tasks in numerical processing that are routinely
handled with Fourier techniques. One of these is filtering for the removal of noise
from a “corrupted” signal. The particular situation we consider is this: There is some
underlying, uncorrupted signal u(¢) that we want to measure. The measurement
process is imperfect, however, and what comes out of our measurement device is a
corrupted signal c¢(¢). The signal c¢(¢) may be less than perfect in either or both of
two respects. First, the apparatus may not have a perfect delta-function response, so
that the true signal u(¢) is convolved with (smeared out by) some known response
function r(¢) to give a smeared signal s(),

s(t)=/c>o r¢—tu(r)dt or S(f)=R(HU(S) (13.3.1)

—0o0

correl.h

