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The Kepler Problem

For the Newtonian 1/r 2 force law, a miracle occurs —
all of the solutions are periodic instead of just quasi-
periodic. To put it another way, the two-dimensional
tori are further decomposed into invariant circles. This
highly degenerate situation seems unbelievable from
the point of view of general theory, yet it is the most
interesting feature of the problem.

— Richard Moeckel, Bull. AMS., 41:1 (2003), pp. 121–2.
Review of Classical and Celestial Mechanics, the Recife
Lectures, Cabral and Diacu (eds.), Princeton University
Press, 2002.

A necessary preliminary to a full understanding of the Kepler problem is a full
familiarity with the geometric and analytic features of the conics — particu-
larly those of the ellipse.

1 Features of the Ellipse: Geometry and Analysis

Placing the origin at the center C , with X- and Y -coordinate axes coinciding
respectively with the major and minor axes of the ellipse, then in terms of
these Cartesian coordinates, the equation of the ellipse reads

X2

a2
+ Y

2

b2
= 1 (1.1)

where a and b measure the semimajor and semiminor axes, respectively. The
equation can be characterized parametrically in the form

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2008 
29D. Ó Mathúna, Integrable Systems in Celestial Mechanics, doi: 10.1007/978-0-8176-4595-3_2, 
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X = a cosE, Y = b sinE . (1.2)

The line PQ normal to the major axis through an arbitrary point P(X,Y)meets
the circumscribed circle at P0(X, Y0). With E denoting the angle subtended at
the center C between CP0 and CQ, the interpretation of (1.2) is clear, and
furthermore we see that

CQ = a cosE, P0Q = a sinE, PQ = b sinE . (1.3)

For the radius vector CP = R from the center to the arbitrary point P(X,Y) of
the ellipse, we have

R2 = X2 + Y 2 = a2 − (a2 − b2) sin2 E . (1.4)

The eccentricity e of the ellipse may be defined by

b2 = a2(1− e2) (1.5)

so that for (1.4), we may write

R2 = a2[1− e2 sin2 E] (1.6a)

or

R = a[1− e2 sin2 E]1/2 (1.6b)

as the equation for the ellipse in terms of the “eccentric angle” E.
For the corresponding equation in terms of center-based polar coordi-

nates (R, θ), we note

X = R cosθ, Y = R sinθ (1.7)

and equation (1.1) becomes

R2
[
b2

a2
cos2 θ + sin2 θ

]
= b2 (1.8)

which, on the introduction of (1.5) yields

R2[1− e2 cos2 θ] = a2(1− e2) (1.9a)

R = a
√

1− e2

[1− e2 cos2 θ]1/2
(1.9b)

as the required equation.
The point F(ae,0) is a focus of the ellipse. Moving the origin to the focus

through the translation

x = X − ae, y = Y (1.10)

the Cartesian equation (1.1) becomes
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(x + ae)2
a2

+ y
2

b2
= 1 . (1.11)

Substituting from (1.5) into (1.11) and rearranging yields

x2 +y2 = [a(1− e2)− ex]2 . (1.12)

We now introduce polar coordinates (r , f ) centered at the focus so that

x = r cosf , y = r sinf (1.13)

and relation (1.12) may be written

r = a(1− e2)− er cosf = e
[
a(1− e2)

e
− r cosf

]
. (1.14)

If we consider the line x = a(1 − e2)/e (parallel to the y-axis), which we call
the directrix, then the factor in square brackets on the right of (1.14) measures
the distance from an arbitrary point on the ellipse to the directrix. Hence equa-
tion (1.14) merely states that for an arbitrary point on the curve, the ratio of
the distance from the focus to the distance from the directrix is given by the
eccentricity e. This, in fact, can be taken as the general definition of a conic,
which for e < 1 is an ellipse, whereas for e > 1 it is a hyperbola. Returning to
(1.14), we note that it can be put in the neater — and possibly more recogniz-
able — form

r = a(1− e2)
1+ e cosf

(1.15)

which, with e < 1, we take as the standard equation for the ellipse.
For the corresponding relation in terms of the “eccentric angle” E,

r 2 = x2 +y2 = (X − ae)2 + Y 2

= X2 + Y 2 − 2aeX + a2e2

= R2 − 2a2e cosE + a2e2 .

(1.16)

Introducing R from (1.6) into (1.16) yields

r 2 = a2[1− e2 sin2 E − 2e cosE + e2] = a2[1− e cosE]2 (1.17)

so that

r = a[1− e cosE] (1.18)

as the sought-for relation.
For the ellipse, therefore, we note the following:

1. Equation (1.6) relates the center-based radius vector R at the point P to the
angle-parameter E, being the angle subtended at the center between the
major axis and the radius to the point where the normal to the major axis
through P meets the circumscribed circle.
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2. Equation (1.9) gives the equation of the ellipse in terms of the center-based
polar coordinates (R, θ).

3. Equation (1.15) gives the equation of the ellipse in terms of the focus-based
polar coordinates (r , f ).

4. Equation (1.18) relates the radial coordinate r of the focus-based system
(r , f ) of item 3 above to the angle parameter E referred to in item 1 above.
The attractive simplicity of (1.18) must be balanced against its mixed na-
ture, involving coordinate systems of different origins.

A straightforward exercise yields the relation between the angles E and f .
Since

x = r cosf = r
[

2 cos2 f
2
− 1

]
= r

[
1− 2 sin2 f

2

]
(1.19)

we have

(1) 2r cos2 f
2
= r + x = r +X − ae = a(1− e cosE)+ a cosE − ae

= a(1− e)[1+ cosE] = 2a(1− e) cos2 E
2

(1.20)

and hence

r cos2 f
2
= a(1− e) cos2 E

2
. (1.21)

(2) 2r sin2 f
2
= r − x = r −X + ae = a(1− e cosE)− a cosE + ae

= a(1+ e)[1− cosE] = 2a(1+ e) sin2 E
2

and hence

r sin2 f
2
= a(1+ e) sin2 E

2
. (1.22)

Dividing (1.22) by (1.21) yields

tan2 f
2
= 1+ e

1− e tan2 E
2
, tan2 E

2
= 1− e

1+ e tan2 f
2

. (1.23a,b)

This latter relation can now be used to derive the equation for R in terms of f ,
but its algebraic complexity limits its utility.

Returning to the standard equation (1.15), we see that (with prime denoting
differentiation with respect to f )

r ′ = dr
df

= ae(1− e2) sinf
(1+ e cosf)2

. (1.24)

Hence r ′ = 0 for f = 0,±π, . . . ,±nπ . It can be easily checked that f = 0
is a minimum point for r (as also are f = ±2nπ ) while f = π (as well as
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f = ±(2n + 1)π ) is the maximum point for r . The point f = 0, at which
r = a(1−e), we shall call the pericenter ; the point f = π , at which r = a(1+e),
we shall call the apocenter.

At the extremity of the semiminor axis, we have

x = −ae, y = b = a
√

1− e2 (1.25)

from which it follows that, at that extremity,

r = a, cosf = −e (1.26)

and hence we have that [a, arccos e] are the focus-based polar coordinates of
the extremity of the positive semiminor axis.

2 The Two-Body Problem

We consider the motion of two bodies moving under the influence of their
mutual attraction. Denoting the masses of the two bodies by m1 and m2, with
position vectors r1 and r2, referred to the origin at 0, we write

r = r2 − r1 . (2.1)

In accordance with the inverse square law governing the gravitational attrac-
tion of m1 and m2, the equations of motion for m1 and m2 are given respec-
tively by

m1r̈1 = Gm1m2

r 2
er = Gm1m2

r 3
r, and hence r̈1 = Gm2

r 3
r (2.2a)

m2r̈2 = −Gm1m2

r 2
er = −Gm1m2

r 3
r, and hence r̈2 = −Gm1

r 3
r (2.2b)

where we have used the “dot” to denote differentiation with respect to time t,
and where the unit vector er is defined by r = |r|er = rer . Subtracting (2.2a)
from (2.2b), we have

r̈2 − r̈1 = r̈ = −G(m1 +m2)
r 3

r (2.3)

and as the equation is unaltered by the replacement of r by −r, or by the
interchange of m1 and m2, equation (2.3) describes the motion of either body
relative to the other. Moreover, equation (2.3) shows that the problem has been
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reduced to that of the motion of a particle of unit mass in the gravitational field
of a body of mass m, situated at the origin, where

m =m1 +m2 (2.4)

and if we set

μ = G(m1 +m2) = Gm (2.5)

then equation (2.3) reads

r̈ = − μ
r 3

r = − μ
r 2

er (2.6)

which is the standard form.
In the case of planetary motion, one may think of m1 as the Sun and m2 as

the planet. In that case, we may write

m =m1 +m2 =m1

(
1+ m2

m1

)
(2.7)

and (2.6) describes the motion of the planet in the heliocentric coordinate
system. We may also note that the dominance of the mass of the Sun would
permit the approximation

m ≈m1, μ ≈ Gm1 (2.8)

when such an approximation is appropriate.
At this point, we introduce the gravitational potential. At an arbitrary

point P in the gravitational fields of a mass m at Q, the function U defined
by

U = Gm
|PQ| =

Gm
r

= μ
r

(2.9)

is the potential per unit mass: it has the feature that the force defined by the
gradient of this function U is in fact the Newtonian gravitational force acting
on a particle of unit mass, namely

F = ∇U = −Gm
r 2

er = −Gmr 3
r = − μ

r 3
r (2.10)

so that, for the equation of motion of a particle P of unit mass, we have

r̈ = −Gm
r 3

r = − μ
r 3

r (2.11)

identical with (2.6).
In case of several masses mi, i = 1, . . . , n, situated respectively at Qi, i =

1, . . . , n, the potential function per unit mass at P is given by

U =
n∑
i=1

Gmi

|PQi| (2.12)

to which we shall have occasion to refer later.
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In the next section when we encounter the conservation of energy, we shall
see that the potential energy V per unit mass for a particle in the gravitational
field of a mass m is given by

V = −Gm
r

= −μ
r
= −U (2.13)

so that the potential function is the negative of the potential energy.
The problem defined by the differential equations (2.6) with μ given by (2.5)

is known as the Kepler problem.

3 The Kepler Problem: Vectorial Treatment

In the class of problems in Celestial Mechanics, the Kepler problem is distin-
guished by several features: it has every possible “degeneracy” — the “frequen-
cies” associated with all three coordinates coincide so that all bound orbits are
periodic (except for collision orbits); but more relevant at this point is the fact
that the motion is always planar. This means that it admits a vectorial treat-
ment to which other problems are not amenable.

In terms of a (heliocentric) spherical coordinate system (r , θ,ϕ) with unit
base vectors er , eθ , and eϕ, it follows from

r = rer (3.1)

that the velocity vector v is given by

v = ṙ = ṙer + r θ̇eθ + r sinθ · ϕ̇eϕ (3.2)

where again the dot denotes differentiation with respect to time; there follows

r · ṙ = r ṙ (3.3a)

v2 = v · v = ṙ · ṙ = ṙ 2 + r 2θ̇2 + r 2 sin2 θϕ̇2 . (3.3b)

We note that the fundamental equation (2.6) admits an immediate first in-
tegral — which we shall recognize as the energy integral. Taking the scalar
product of (2.6) with the velocity vector ṙ, we find

ṙ · r̈ = − μ
r 3

r · ṙ = − μ
2r 3

d
dt
(r · r) = − μ

2r 3

d
dt
(r 2) = − μ

r 2
ṙ (3.4)

and so

1
2

d
dt
(̇r · ṙ) = d

dt

(
μ
r

)
(3.5)

or

d
dt

[
1
2v

2 − μ
r

]
= 0 . (3.6)
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Letting E denote the constant of integration, we therefore have the energy
integral in the form

1
2v

2 − μ
r
= E . (3.7)

For a particle of unit mass, the first term is clearly the kinetic energy and the
second term is the potential energy; accordingly, if we use T to denote the
kinetic and V the potential energy, then

T = 1
2v

2, V = −μ
r
, T + V = E (3.8a,b,c)

and the definition of V is consistent with (2.13).
Rewriting (3.7) in the form

1
2v

2 = E + μ
r

(3.9)

and noting that the left-hand side is always positive, then if E is negative,
relation (3.9) sets the lower limit on μ/r : if we exhibit the case of negative
energy by writing

E = −α2 (3.10)

and define a length scale a by setting

a = μ
2α2

(3.11)

then we have that

μ
r
−α2 ≥ 0 implying

μ
r
≥ α2 (3.12)

and hence

r ≤ μ
α2

= 2a (3.13)

giving the corresponding upper limit on r : negative energy implies bound or-
bits, and these shall be the main focus of our attention.

Returning to relations (3.1) and (3.2) we form the angular momentum vector
C by taking the cross product of r and v, to find

C = r× v = r× ṙ = −r2 sinθϕ̇eθ + r 2θ̇eϕ (3.14)

and we further note that

dC
dt

= d
dt
(r× ṙ) = ṙ× ṙ+ r× r̈ = 0− r× μ

r 3
r = 0 . (3.15)

Hence in the central gravitational field, the angular momentum vector C is
constant. At this point, we observe that
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d
dt
(er ) = d

dt

(
r
r

)
= r ṙ− ṙr

r 2
= r 2ṙ− r ṙr

r 3

= (r · r)̇r− (r · ṙ)r
r 3

= r× (̇r× r)
r 3

= −r× C
r 3

= C× r
r 3

. (3.16)

When C = 0, the above relation implies that, in that case, the unit vector er is
constant — hence the motion is rectilinear along the radius vector toward the
origin, leading to collision. When C ≠ 0, it follows from (3.14) that

r · C = r · (r× ṙ) = 0 (3.17)

so that r remains normal to the fixed vector C; hence the motion takes place
in the plane defined by the fixed (constant) vector C.

It further follows from (3.14) that

C2 = C · C = (r× ṙ) · (r× ṙ) = r 4 sin2 θϕ̇2 + r 4θ̇2

= r 2[r 2θ̇2 + r 2 sin2 θϕ̇2] = r 2[v2 − ṙ 2] (3.18)

and we have a second integral, this one involving the magnitude of the angular
momentum vector C, namely

r 2[v2 − ṙ 2] = C2 . (3.19)

Moreover, rewriting the latter as an expression for v2, and recalling the energy
integral (3.7), we have

1
2v

2 = 1
2

[
C2

r 2
+ ṙ 2

]
= E + μ

r
(3.20)

giving the relation between the constants C and E.
Returning to (3.16) and again applying the gravitational equation (2.6) and

also noting that Ċ = 0, we find

d
dt
(er ) = C× r

r 3
= −C× r̈

μ
= −1

μ
d
dt
(C× ṙ) = 1

μ
d
dt
(v× C) . (3.21)

If we let e denote the arbitrary constant vector introduced by the integration
of this latter vector differential equation, we have

μ(er + e) = v× C = ṙ× (r× ṙ) = (̇r · ṙ)r− (r · ṙ)̇r = v2r− r ṙ ṙ . (3.22)

Again, we note in passing that if C = 0, then e = −er , so that e is the unit
vector along the radius vector toward the origin. For C �= 0, we take the scalar
product with C across (3.22), and noting that C is normal to both r and ṙ, we
find

e · C = 0 (3.23)

which implies that the vector e lies in the plane of the motion.
Taking the scalar product with r across (3.22) gives
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μ(r + e · r) = v2r 2 − r 2ṙ 2 = r 2(v2 − ṙ 2) = C2 (3.24)

wherein we have introduced (3.18); we now rewrite (3.24) in the form

e · er = C2

μr
− 1 . (3.25)

If, in the plane of the motion, we let the vector e, whose magnitude we denote
by e, define a base axis and if we let f denote the angle in this plane between
this base vector and the radius vector r, then (r , f ) constitute a polar coordi-
nate basis in the plane of the motion, and equation (3.25) can be written in the
form

r[1+ e cosf] = C2

μ
. (3.26)

For e = 0, the motion is circular. For e �= 0, we rewrite (3.26) [in accord with
(1.14)] as

r = e
[
C2

eμ
− r cosf

]
(3.27)

which [referring to equation (1.14) and the subsequent paragraph] defines a
conic with a directrix at a distance C2/μe from the origin and with eccentric-
ity e. And for e < 1, this conic is an ellipse, and the vector e is the vector based
at the focus (origin) directed at the pericenter and with magnitude e.

The vector e is known as the Runge–Lenz vector and also the eccentric axis
vector.

There is one more exercise to be performed on relation (3.22). We recall
that since C is normal to v, there follows that

|v× C| = vC, (v× C)2 = v2C2 . (3.28)

Accordingly, if we square both sides of (3.22), then on reversing the order we
find

v2C2 = μ2(e+ er )2 = μ2[1+ e2 + 2e · er ]

= μ2
[

1+ e2 + 2
(
C2

μr
− 1

)]
= μ2(e2 − 1)+ 2μ

C2

r
(3.29)

in which we have introduced (3.25) and rearranged. Hence

μ2(1− e2) = −2C2
[

1
2v

2 − μ
r

]
= −2C2E (3.30)

from which it is immediately evident that

e � 1 corresponds to E � 0 (3.31)

i.e., negative/positive energy corresponds to elliptic/hyperbolic orbits — as
anticipated earlier.
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Restricting our attention to bound orbits (negative energy), we introduce
(3.10) and (3.11) into (3.30), to obtain

1− e2 = 2C2

μ2
α2 = C2

μ

/
μ

2α2
= C2

μ
· 1
a

(3.32)

and hence

C2

μ
= a(1− e2) = p (3.33)

where we introduce the symbol p to denote the semi–latus rectum — the value
of r at f = π/2. In terms of these length parameters, equation (3.26) reads

r = p
1+ e cosf

= a(1− e2)
1+ e cosf

(3.34)

as an alternate form for the equation of the orbit, and we write

b = a
√

1− e2 (3.35)

as the length parameter of the semiminor axis.
The polar coordinates (r , f ) in the orbit plane together with the axis normal

to the plane constitute a cylindrical polar coordinate system. With base unit
vectors er and ef in the orbit plane together with the axial unit vector ek, we
may write

r = rer (3.36a)

v = ṙ = ṙer + r ḟef (3.36b)

and, for the angular momentum, we have

C = r× v = r 2ḟek . (3.37)

It follows that, for the magnitude of the angular momentum, we have

r 2ḟ = C = √μp = √μa(1− e2) = √μa
√

1− e2 (3.38)

wherein we have introduced (3.33). If we let τ denote the time for a complete
orbit and if we also introduce the mean motion n, measuring the frequency,
by the relation

n = 2π
τ

(3.39)

and note that the area traced out in one orbit is πab, we have that the mean
areal velocity over an orbit is given by

πab
τ

= πab · n
2π

= 1
2nab = 1

2na
2
√

1− e2 . (3.40)
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However, the areal velocity is, in fact, given by one-half the angular momentum
of (3.38). Identifying the quantity in (3.38) with twice the quantity in (3.40)
gives, after cancellation of the common

√
1− e2 factor,

na2 = √μa (3.41)

and hence the important relation

n2a3 = μ = Gm = G(m1 +m2) (3.42)

whence we have substituted for μ from (2.5).
We are now in a position to make some observations:

1. The motion takes place in a plane defined by the angular momentum vec-
tor, and for negative energy the orbit is the ellipse (3.34); this is Kepler’s
First Law.

2. The constancy of the angular momentum (3.38) implies a constant mean
areal velocity; this is Kepler’s Second Law.

3. If the approximation (2.8) were to be introduced into (3.42), we would have
n2a3 = Gm, a constant for all planets; this is Kepler’s Third Law, more
usually stated as the square of the orbit period is proportional to the cube
of the semimajor axis.

Recalling equation (3.20) for the case of negative energy so that E = −α2,
we rearrange to obtain

r 2ṙ 2 = −[2α2r 2 − 2μr + C2]
= −2α2

[
r 2 − μr

α2
+ C2

2α2

]
. (3.43)

The singularity at r = 0 in this differential equation can be regularized by
means of a regularizing transformation whereby a new independent variable E
is introduced through the defining relation

dE
dt

=
√

2α2

r
so that r

d
dt

=
√

2α2 d
dE

(3.44)

and, on the introduction of (3.44) and some rearrangement, equation (3.43)
becomes (

dr
dE

)2

= −
[
r 2 − μ

α2
r + C

2

μ
· μ

2α2

]
= −[r 2 − 2ar + a2(1− e2)

]
= −[(a− r)2 − a2e2] (3.45)

where we have introduced (3.11) and (3.33). By means of the substitution
a− r = aeZ , this immediately integrates, and we find

r = a[1− e cosE] (3.46)
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satisfying the condition that E = 0 when r = a(1−e). Recalling relation (1.18),
it is evident that E can be identified with the eccentric angle introduced in (1.2).

It remains to determine the relation between the angle E and the time t.
From the defining relation (3.44), we have

√
2α2 dt

dE
= r = a[1− e cosE] (3.47)

so that, on integration √
2α2(t − t0) = a[E − e sinE] (3.48)

satisfying the requirement that E = 0 when t = t0. From (3.41), we note that

n2a2 = μ
a
= 2α2 (3.49)

and hence

M = n(t − t0) = E − e sinE, (3.50)

known as Kepler’s equation. The eccentric angle E defined by (3.44) is, in Celes-
tial Mechanics, called the eccentric anomaly, and the quantity M = n(t − t0) is
called the mean anomaly. The angle f , introduced in equation (3.26), is called
the true anomaly. We postpone to the next section the full treatment of the
true anomaly.

The vectorial treatment gives a full account of the Kepler orbit in its plane.
The fuller picture of the motion in space, including the orientation of the orbit
plane, is more clearly seen in the Lagrangian analysis, which is the subject of
the next section.

4 The Kepler Problem: Lagrangian Analysis

In terms of spherical coordinates (r , θ,ϕ) (of the heliocentric system), the
three Cartesian coordinates can be expressed as

x = r sinθ cosϕ (4.1a)

y = r sinθ sinϕ (4.1b)

z = r cosθ (4.1c)

from which it can readily be deduced that the metric coefficients gij are given
by

g11 = 1, g22 = r 2, g33 = r 2 sin2 θ, gij = 0, i ≠ j . (4.2)

Then for the kinetic and potential energies per unit mass, we have, respec-
tively,
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T = 1
2v

2 = 1
2

[
ṙ 2 + r 2θ̇2 + r 2 sin2 θϕ̇2], V = −μ

r
(4.3)

and the Hamiltonian, reflecting the total energy, is

H = T + V = 1
2

[
ṙ 2 + r 2θ̇2 + r 2 sin2 θ · ϕ̇2]− μ

r
(4.4)

while, for the Lagrangian, we have

L = T − V = 1
2

[
ṙ 2 + r 2θ̇2 + r 2 sin2 θϕ̇2]+ μ

r
. (4.5)

From the latter there follows the system of Lagrangian equations, which
takes the form

d
dt
[ṙ ] = r θ̇2 + r sin2 θ · ϕ̇2 − μ

r 2
(4.6a)

d
dt
[r 2θ̇] = r 2 sinθ cosθ · ϕ̇2 (4.6b)

d
dt
[r 2 sin2 θ · ϕ̇] = 0 . (4.6c)

As the coordinate ϕ does not appear explicitly in the Lagrangian (4.5), it is
an ignorable coordinate, and the procedure outlined in Chapter 1 may be fol-
lowed; or we may proceed directly.

From (4.6c) there follows an immediate integration yielding

r 2 sin2 θ · ϕ̇ = C3, or ϕ̇ = C3

r 2 sin2 θ
(4.7a,b)

where C3 is the constant of integration and represents the polar component of
angular momentum. The introduction of (4.7) into (4.6a,b) yields, respectively

d
dt
[ṙ ] = r θ̇2 − μ

r 2
+ C2

3

r 3 sin2 θ
(4.8a)

d
dt
[r 2θ̇] = C2

3
cosθ

r 2 sin3 θ
. (4.8b)

Considering (4.8b), we multiply across by r 2θ̇ to obtain

r 2θ̇
d
dt
[r 2θ̇] = C2

3
cosθ · θ̇

sin3 θ
(4.9)

which may be rearranged as

d
dt
[r 2θ̇]2 = −C2

3
d
dt

[
1

sin2 θ

]
(4.10)

or alternatively

d
dt

[
(r 2θ̇)2 + C2

3

sin2 θ

]
= 0 . (4.11)
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This implies that the expression in square brackets is constant; however, if we
substitute for C3 in terms of ϕ̇ from (4.7a), the expression becomes

r 2[r 2θ̇2 + r 2 sin2 θϕ̇2] = r 2(v2 − ṙ 2) (4.12)

and if we recall (3.18), we see that this constant is the square of the angular
momentum, namely C2. Accordingly, the integral of (4.11) may be written

r 4θ̇2 + C2
3

sin2 θ
= C2 (4.13)

or alternatively

r θ̇2 = 1
r 3

[
C2 − C2

3

sin2 θ

]
(4.14)

as the form appropriate for the reduction of (4.8a), which we effect prior to
the integration of (4.13).

If we substitute for r θ̇2 from (4.14) and for ϕ̇ from (4.7b) into equation
(4.8a), we see that the terms with C2

3 cancel and we have

d
dt
[ṙ ] = C2

r 3
− μ
r 2
= d

dr

[
μ
r
− 1

2
C2

r 2

]
. (4.15)

If we multiply across by ṙ , we obtain

d
dt
[1

2 ṙ
2] = d

dt

[
μ
r
− 1

2
C2

r 2

]
(4.16)

or on rearrangement

d
dt

[
1
2 ṙ

2 − μ
r
+ 1

2
C2

r 2

]
= 0 (4.17)

and so the expression in square brackets must be constant. Again, recall-
ing (3.19) we see that the expression

1
2 ṙ

2 − μ
r
+ 1

2
C2

r 2
= 1

2 ṙ
2 − μ

r
+ 1

2(v
2 − ṙ 2) = 1

2v
2 − μ

r
(4.18)

is in fact the energy integral, whose constant has already been designated as
E (3.7) and for negative energy has been identified by −α2 (3.10). Accordingly,
the integrated relation reads

1
2 ṙ

2 − μ
r
+ 1

2
C2

r 2
= −α2 (4.19)

or alternatively

r 2ṙ 2 = −2α2
[
r 2 − μ

α2
r + C2

2α2

]
(4.20)
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identical with the previously derived (3.43). The subsequent analysis leading
to the solution (3.46)

r = a[1− e cosE] (4.21)

follows an identical pattern.
In item 4 below relation (1.18), we have noted a shortcoming of this sim-

ple form of the equation of the ellipse: for the dynamic problem a second
shortcoming is now coming into view. If one were to apply the transformation
(3.44) to equation (4.13) for θ̇, we would still have a coupled equation, and if
one were to substitute for r from (4.21), one has a differential equation that is
not readily integrable.

In fact, an inspection of equation (4.13) suggests the form of the alternative
regularizing transformation that will effect the uncoupling of equations (4.13)
and (4.17), whose uncoupled form admits a ready integration in the case of
each equation.

The singularity in the differential equation (4.13) can be regularized by
means of the [regularizing] transformation

df
dt

= C
r 2
, C

d
df

= r 2 d
dt

(4.22a,b)

and with f as the new independent variable, and with prime denoting differ-
entiation with respect to f , equation (4.13) becomes

C2θ′2 + C2
3

sin2 θ
= C2 . (4.23)

If we now introduce a new parameter ν , representing the inclination of the
orbit plane, and defined by

ν = C3

C
(4.24)

then equation (4.23) may be written

sin2 θ · θ′2 = (1− ν2)− cos2 θ (4.25)

which, as we shall see, admits a straightforward integration.
Returning to equation (4.20), we multiply by a further r 2-factor to obtain

r 4ṙ 2 = −r 2[2α2r 2 − 2μr + C2] . (4.26)

If we utilize the transformation (4.22) to introduce the new independent vari-
able f , then after dividing across by C2 we have

r ′2 = −r 2
[

1− 2μ
C2
r + 2α2

C2

]
(4.27a)

= −r 2
[

1− 2
p
r + 1

ap
r 2
]

(4.27b)
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where we have introduced the length scales from (3.11) and (3.33) into (4.27a)
to obtain (4.27b).

The integration of (4.27b) is facilitated by the introduction of an auxiliary
dependent variable u, defined by

u = 1
r
, r = 1

u
, r ′ = − 1

u2
u′ (4.28)

and, after a little manipulation, equation (4.27b) becomes

u′2 = −
[(
u− 1

p

)2

+ 1
ap

− 1
p2

]
=
[
e2

p2
−
(
u− 1

p

)2]
. (4.29)

By setting

u− 1
p
= e
p
w (4.30)

the differential equation for w reads

w′2 = 1−w2 (4.31)

with solution

w = cos(f +ω0) (4.32)

where ω0 is the constant of integration. It follows from (4.30) that

u = 1
p
[
1+ e cos(f +ω0)

]
(4.33)

and hence, noting (4.28), we have

r = p
1+ e cos(f +ω0)

. (4.34a)

Except for the factor ω0, this is identical with (1.15) for the ellipse, so the
variable f has the obvious angular interpretation; moreover, if the angle is
measured from the pericenter so that

f = 0 corresponds to r = a(1− e) (4.34b)

then clearly ω0 = 0 and we have

r = p
1+ e cosf

(4.35)

as the solution for r , identical with (1.15).
Returning to equation (4.25), we note that the integration can be facilitated

by setting

cosθ =
√

1− ν2S (4.36)



46 Ch 2 The Kepler Problem

so that equation (4.25) becomes

S′2 = 1− S2 (4.37)

with solution

S = sin(f +ω) (4.38)

where ω is the constant of integration. The point where the orbit crosses the
z-plane is called the node and the line joining it to the focus is called the nodal
line. The crossing of the z-plane corresponds to θ = π/2, and so noting (4.36)
and (4.38), this must correspond to f = −ω; hence ω measures the angle in
the orbit plane subtended at the focus between the major axis and the nodal
line. And we may write

cosθ =
√

1− ν2 sin(f +ω) (4.39)

as the complete solution for the θ-coordinate.
It remains to integrate equation (4.7) for the third coordinate ϕ. Writ-

ing (4.7) in the form

r 2ϕ̇ = C3

sin2 θ
(4.40)

we introduce the regularizing transformation (4.22) replacing t as the inde-
pendent variable by f . We then have

Cϕ′ = C3

sin2 θ
(4.41)

and if we divide across by C and note the defining relation (4.24) for ν , we
obtain

ϕ′ = ν
sin2 θ

= ν
1− cos2 θ

. (4.42)

If we introduce cosθ in terms of f from (4.39), we obtain

ϕ′ = ν
1− (1− ν2) sin2(f +ω)

= ν
cos2(f +ω)+ ν2 sin2(f +ω) =

ν sec2(f +ω)
1+ ν2 tan2(f +ω) . (4.43)

The integration of equation (4.43) is facilitated by the substitution

tanΦ = ν tan(f +ω) (4.44)

from which we have

sec2 Φ · Φ′ = ν sec2(f +ω), sec2 Φ = 1+ ν2 tan2(f +ω) (4.45a,b)

and from (4.43) there follows
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ϕ′ = Φ′ implying Φ =ϕ +ϕ0 (4.45c)

where ϕ0 is the constant of integration. Hence (4.44) implies that

tan(ϕ +ϕ0) = ν tan(f +ω) . (4.46)

We have already noted that at the nodal crossing, f = −ω; if we now let Ω
denote the longitude at this nodal line, then from (4.46) there follows

tan(Ω+ϕ0) = 0, implying ϕ0 = −Ω (4.47)

and hence, from (4.46), we have

tan(ϕ −Ω) = ν tan(f +ω) (4.48)

as the solution for the third coordinate ϕ.
The completion of the solution requires the determination of the time-angle

relation connecting the time with the true anomaly f . For this we introduce the
expression (4.35) into the inverted form of the defining relation (4.22a), and if
we substitute for C from (3.33), we find

dt
df

= r 2

C
= 1√μa√1− e2

a2(1− e2)2

(1+ e cosf)2
. (4.49)

If we recall from (3.41) that
√μa = na2, it follows that

n
dt
df

= (1− e2)3/2

(1+ e cosf)2
. (4.50)

For the integration of this expression we first note that

d
df

[
e sinf

1+ e cosf

]
= (1+ e cosf)e cosf + e2 sin2 f

(1+ e cosf)2
= e2 + e cosf
(1+ e cosf)2

= (1+ e cosf)− (1− e2)
(1+ e cosf)2

= 1
1+ e cosf

− (1− e2)
(1+ e cosf)2

(4.51)

and hence, on multiplying by
√

1− e2 and rearranging, we have

(1− e2)3/2

(1+ e cosf)2
=

√
1− e2

1+ e cosf
− d

df

[
e
√

1− e2 sinf
1+ e cosf

]
. (4.52)

For the integration of the first term on the right we note that if we set

tanχ =
√

1− e2 sinf
e+ cosf

(4.53)

there follows
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sec2 χ = (1+ e cosf)2

(e+ cosf)2
, cosχ = e+ cosf

1+ e cosf
, (4.54a,b)

sinχ =
√

1− e2 sinf
1+ e cosf

. (4.54c)

Taking the derivative of (4.53), we find

sec2 χ · χ′ = (1+ e cosf)2

(e+ cosf)2
χ′

=
√

1− e2(e+ cosf) cosf +√1− e2 sin2 f
(e+ cosf)2

=
√

1− e2 (1+ e cosf)
(e+ cosf)2

(4.55)

which, with (4.54a), yields

χ′ =
√

1− e2

1+ e cosf
(4.56)

and hence, noting (4.53), we have∫ √
1− e2

1+ e cosf
df = χ = arctan

[√
1− e2 sinf
e+ cosf

]
. (4.57)

Accordingly, the integration of (4.50) is accomplished by combining (4.52) and
(4.57) to yield

M = n(t − t0) = arctan
[√

1− e2 sinf
e+ cosf

]
− e

√
1− e2 sinf

1+ e cosf
(4.58)

where t0, reflecting the constant introduced by the integration, is the time of
the pericenter passage, i.e., t = t0 corresponds to f = 0.
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